Exam.Code:0439 Sub. Code: 3490

2022

M.Sc. (Bio-Informatics) First Semester MBIN-8002: Mathematics

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting atleast one question from each Section.

X-X-X

I (a) How many terms are there in geometric progression

- **(b)** Simplify the surd $\frac{\sqrt{2000}}{\sqrt{50}}$.
- (c) Find $\vec{B} \times \vec{A}$ if $\vec{A} = 2i + j + k$, $\vec{B} = -4i + 3j + k$.
- (d) Find the sum of the first 50 terms of the sequence 1. 3, 5, 7, 9, ...
- (e) Find the expansion of $(2x y)^4$.
- (f) For f(x) = x+1 and $g(x) = \sqrt{5x}$, find $g \circ f(1)$.
- (g) Determine the coefficient of x^3 in the expansion of $\frac{1}{(1+x)^2}$.

(h) For
$$z_1 = 6 - 2i$$
, $z_2 = 3 + 4i$. Find $z_1 z_2$. (8 × 1.5)

Section A

- II (a) An arithmetic progression has 3 as its first term. Also the sum of the first 8 term. Also, the sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference. (6)
- (b) From the 26 letters in English, 11 have vertical symmetry, 9 have horizontal symmetry and 4 have both types of symmetries. How many have neither? (6)

III(a) Solve each of the following equations for the complex number z

(i)
$$4 + 5i = z - (1 - i)$$

(ii)
$$(1+2i)z = 2+5i$$
 (3+3)

(b) Find the term independent of
$$x$$
 in the expansion of $(\frac{\sqrt{x}}{\sqrt{3}} + \frac{\sqrt{3}}{2x^2})^{10}$. (6)

Section B

IV(a) Evaluate
$$\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$$
. (6)
(b) Evaluate $\lim_{x \to \infty} \frac{x^3+1}{3x^3-4x+5}$.

(6)

(2)

V(a) (i) If
$$y=(x+2)((x^2+1))$$
. Find $\frac{dy}{dx}$.

(ii) If
$$y = \log(x + \sqrt{(x^2 + a^2)})$$
. Prove that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a^2}}$. (3+3)

(ii) If
$$y = \log(x + \sqrt{(x^2 + a^2)})$$
. Prove that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a^2}}$.
(b) If $y = acosmx + bsinmx$. Prove that $\frac{d^2y}{dx^2} + m^2y = 0$. (6)

Section C

$$VI(a) \text{ If } A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix} \text{ Find } A^{-1}.$$
 (6)

(b) Determine the value of λ for which the system of equations

$$x + y + z = 1$$

$$x + 2y + 4z = \lambda$$

$$x + 4y + 10z = \lambda^{2}$$

possesses a solution and hence find a solution.

VII(a) Find a unit vector which is coplanar with \vec{a} and \vec{b} but is perpendicular to \vec{c}

$$\vec{a} = 2i - j + k$$

 $\vec{b} = -i + j + k$
 $\vec{c} = i + 2k$

(6)

(b) Construct a truth table to show that $(\overline{X} + Y\overline{Z}) = \overline{X} \cdot (\overline{Y} + \overline{Z})$. (6)

x-x-x