Exam.Code:0474 Sub. Code: 3718

2022

M.Sc. (Physics), Third Semester PHY-8033: Condensed Matter Physics - I

Time allowed: 3 Hours Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. 9 (Unit-V) which is compulsory and selecting one question each from Unit I - IV.

X-X-X

Unit I

- (a) Derive the wave equation for elastic waves in a cubic crystal. Solve it for longitudinal and transverse waves moving in [110] direction.
 (b) What are ionic crystals? Explain the formation of an ionic crystal and obtain an expression for its cohesive energy.
 (a) Define elastic constants for a crystal. Prove that elastic stiffness constants are symmetrical i.e. C_{ij} = C_{ji}.
 (b) Explain why is it necessary to include anharmonic interactions to understand thermal expansion.
- 3. (a) Prove that for the Kronig Penny potential with P<<1, the energy of the lowest band at k=0 is $\frac{h^2P}{4\pi^2ma^2}$.
 - (b) Distinguish between reduced zone, extended zone and periodic zone schemes of representing energy bands.
- 4. (a) Show that in the tight binding approximation, the energy E(k) for b.c.c. lattice is given by $E(\vec{k}) = E_a \beta 8\gamma \cos(a/2) k_x \cos(a/2) k_y \cos(a/2) k_z$ 8 Discuss the shape of constant energy surface in k space.
 - (b) In an extrinsic semiconductor, the effective mass of the electron is $0.07~m_o$ and that of hole is $0.4~m_o$, where m_o is the rest mass of electron. Calculate the intrinsic concentration of charge carriers at 300 K. Given the energy gap E_g =0.7 eV.

Unit III

- 5. (a) Explain Magnetoresistance. If the applied magnetic field is H, show that the change in resistance of a crystal is proportional to H².
 - (b) Derive an expression for electrical conductivity of semiconductors. 4
- 6. (a) Derive an expression for Hall coefficient and Hall field using Boltzmann transport equation.
 - (b) A Cu strip 4.0 cm wide and 1mm thick is placed in magnetic field with B=2.5 Wb/m² perpendicular to strip. If 300 Amp current is set up in the strip, what Hall potential difference appears across the strip? Atomic weight of Cu is 64 gm/mole and density is 9.0 gm/cm³.

Unit IV

- 7. (a) Discuss the different polarization mechanisms in dielectric and explain their temperature dependence.
 - (b) Discuss Weiss theory of Ferroelectricity. Give some applications of Ferroelectric materials.

- 8. (a) Derive Clausius Mossotti equation. Discuss the variation of dielectric constant of ferroelectric material above Curie temperature.
 - (b) The Bakelite is found to have the real part of its complex relative dielectric constant as 4.36 with a loss tangent of 2.8×10^{-2} at a frequency of 1 Hz. Calculate the complex polarizability of the materials assuming Lorentz field. (Given $N=4\times 10^{28}/m^3$).

Unit V

9. Short questions:

- (a) Define Gruneisen parameter and discuss its relationship with anharmonicity in the lattice.
- (b) Differentiate between antiferroelectricity and ferrielectricity.
- (c) Define cohesive energy.
- (d) Define mobility. How is it related to relaxation time?
- (e) Explain metallic bonding in solids.
- (f) What are elastic waves?

 $(2 \times 6 = 12)$