Exam.Code:0474 Sub. Code: 3719

2012

M.Sc. (Physics). Third Semester PHY-8034: Classical Electrodynamics - Il

Max, Marks: 60 Time allowed: 3 Hours

NOTE: Attempt five questions in all, including Question No. IX (Unit-V) which is compulsory and selecting one question each from Unit I - IV.

x-x-x

Unit I

1(a)A photon strikes a stationary electron giving rise to an electro-positron pair as well as a recoil electron. Find the threshold for the reaction, in terms of electron mass m_0 , using principle (6)of energy-momentum invariance. (6)(b) What are Lorentz transformations. Explain in detail. 2 (a) Using energy-momentum invariant principle, find the kinetic energy of proton in the decay of $\Lambda \to p \ \pi^-$. Mass of proton (p) = 938.5 MeV, mass of π^- = 139.6 MeV. Mass of $\Lambda = 1115$ Mev. (2,2,2)(b)Explain the terms i) time dilation ii) length contraction, iii) proper time.

Unit II

- 3.(a) Show that motion of a non-relativistic charged particle in a crossed uniform and constant (6)electric and magnetic fields is helical. (3,3)(b) What are adiabatic invariants? What is Magnetic mirror.
- 4.(a) What is the major difference in the behavior of a charged particle moving in constant magnetic field, moving with relativistic velocity in one case and in the other case when it is (6)moving with non-relativistic velocity. Discuss in detail.
- (b) What is guiding center approximation? Describe the non-relativistic motion of charged (6)particle in space varying magnetic field

P.T.O.

Unit III

5.(a) Starting from the four-dimensional form of homogenous Maxwell's equations, obtain	wave
equation for A^{μ} .	(6)
(b) Write down the matrix elements of electromagnetic tensor $F_{\mu\nu}$. State transformation	ional
properties of $F_{\mu\nu}$.	(6)
	٠
6.(a) Express fundamental microscopic form Maxwell's equations in covariant form.	(6)
(b) Obtain the expression for the Lagrangian of a charged particle in an Electromagnetic	field
	(6)
	26
. Unit IV	
7.(a) Describe Thomson Scattering.	(6)
(b) Obtain the Lienard-Wiechert potential expression for vector potential.	(6)
8.(a) What are the characteristics of cyclotron radiation and synchrotron radiation?	(6)
(b) Describe Rayleigh Scattering.	(6)
$ \text{Unit } \mathbf{V} $	
	(0)
9.(a) What are time-like events? What are space-like events?	(2)
(b) How does the velocities add up in Special Theory of Relativity.	(2)
(c)Construct two Lorentz invariants using $F_{\mu\nu}$	(2)
(d) What are retarded potentials?	(2)
(e) What is radiation reaction? Write Lorentz force equation taking this into account.	(2)
(f) A charged particle in uniform motion does not emit radiation. True or false? Why?	(2)