Exam.Code:0474 Sub. Code: 3720

2022

M.Sc. (Physics) Third Semester

PHY-8035: Quantum Mechanics - Il

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. 9 (Unit-V) which is compulsory and selecting one question each from Unit I - IV.

x-x-x

UNIT-I

1. (a) Assuming the potential energy for scattering of an electron by an atom as the shielded Coulomb field

$$V(r) = \frac{Ze^2}{r}e^{-\frac{r}{a}}$$

Show that the Born scattering amplitude is

$$f(\theta) = \frac{-2mZe^2}{\hbar^2 K^2} \left[1 + \frac{1}{1 + (Ka)^2} \right] \text{ where } K = 2k\sin\frac{\theta}{2}$$
 (5)

(b) State and prove Optical Theorem.

(7)

- 2. (a) Obtain the solution of the equation $(\nabla^2 + k^2) G(r, r') = -4\pi\delta(r-r')$ through Green's function method.
 - (b) What are identical particles? From scattering of identical particles, how can one infer the spin of particles?

 (5)

UNIT-H

- 3. (a) Obtain the non-relativistic limit of Dirac equation for electron interacting with electromagnetic field.
 - (b) Prove that total angular momentum operator commutes with Dirac Hamiltonian in a central field.
- 4. (a) Develop Klein Gordon equation for a spin zero particle and construct the continuity equation. Hence define the probability and current densities. (6)

P.T.O.

,	(b) Explain how the spin and magnetic moment of the electron are obtained in relativistic theory.	Dirac's
<u>UNIT-HI</u>		
5.	(a) Write down the Lagrangian for complex scalar field. Obtain the Euler I equations of motion.	agrange
	(b) Show how we obtain the quantized form of Hamiltonian of the Dirac field. the result.	Discuss (6)
6.	(a) Develop the Lagrangian for non relativistic field. Construct the Euler Lagrange	
	equation of motion.	(6)
	(b) Describe the terms:	
	(i) Annihilation Operator (ii) Creation Operator (iii) Number Operator.	(6)
<u>UNIT-IV</u>		
7. (a) Write down the Lagrangian for electromagnetic field. Obtain the equations of motion.		
		(6)
	b) Describe the terms	` .
	(i) Time-ordered product (ii) Normal-Ordered product (iii) Feynman diagrams	(6)
8.	(a) Establish the rules of quantization for Dirac Field.	(6)
** *	(b) State the commutation relations used for quantizing Dirac field.	(6)
*	UNIT-V	
9. Attempt all parts:		
	a) Define scattering cross section.	
	b) What is second quantization?	*
12	c) Write note on S-matrix.	
	d) What are Green functions?	
	e) Distinguish incoming and outgoing waves.	
	f) What is Zitterbewegung? (6×2=	12)