Exam.Code:0474 Sub. Code: 3717

2022

M. Sc. (Physics) Third Semester PHY-8032: Particle Physics - I

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. IX (Unit-V) which is compulsory and selecting one question each from Unit 1-IV.

 $\lambda - \lambda - \lambda$

UNIT-I

- a) Show that natural system of units, energy and momentum can be expressed in terms of times
 - b) Explain Yukava Theory of quantum exchange.
 - c) Write the quark constant, Baryon numbers, charge spin and strangeness for the following:-

$$\pi^+, K^-, P, n, \Omega^-, \pi^0, \Sigma^-, \Xi^0$$
(3x4)

- II. a) Write a short notes on neutrino and its source. How many types of neutrino exist in nature? What is the spin of neutrino? Do neutrino have a mass?
 - b) Explain Dirac theory of antiparticles.
 - c) What are Fermions? How will you differentiate between Leptons and Baryons? (3x4)

<u>UNIT – II</u>

- III. a) Describe various iso-spin states of two-nucleon system and the total wave functions.
 - b) At a given centre of mass energy, what is the ratio of cross section for $P+P \rightarrow d+\pi^+$ and $p+n \rightarrow d+\pi^0$
 - c) What is G-parity? Determine G-parity for a system of n-pions. (5.4.3)
- IV. a) What is iso-spin? How its concept was introduced? Write down the iso-spin for pionnucleon system.
 - b) Describe parity and pion-parity.
 - c) Explain CPT invariance and its consequences. (5,4,3)

P.T.O.

<u>UNIT - III</u>

- V. a) In Lorentz invariant phase-space, obtain the expression for the final state factor for nfinal state particle and (n - 1) independent 3-momenta.
 - b) Discuss τ- θ puzzule.
 - c) Explain the introduction of colour quantum numbers.

(5.4.3)

- VI. a) Describe in details Briet-Wingner Resonance formula.
 - b) What are Dalitz plots? Explain K- 3π decay.
 - c) Define Mandelstam variables and show that how the sum of these variables is equal to the sum of the square of masses of the particles involved in a collision. (5,4,3)

UNIT - IV

- VII. a) Why CP is violated in weak interactions? Discuss experimental determination of CP-Violation in K⁰-system.
 - b) Explain the determination of helicity of neutrino.

(7.5)

- VIII. a) Discuss Fermi theory of nuclear β-decay.
 - b) Describe the parity violation in β-decay with experimental evidence.

(6.6)

UNIT - V

- IX. Answer the following:
 - a) Give three examples each for weak interactions with DS = 0 and |DS| = 1.
 - b) Which reaction is more probable:
 - i) $K^0 \rightarrow \pi^+\pi^-$
 - ii) $K^- \to \pi^+ \pi^0$. Explain.
 - c) Explain OZI rule with examples.
 - d) What are four types of fundamental interactions? Give their magnitudes, strength, range and carriers.
 - e) What are Pseudo-scalar and vector particles? Give one example in each case.
 - f) Show that Deutron is iso-singlet.

(6x2)