1129

B.A./B.Sc. (General) Third Semester Statistics Paper – 201: Statistical Inference

Time allowed: 3 Hours

Max. Marks: 65

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x - x - x

Q.1. Answer the following:-

- (i) What is the difference between parameter and statistic?
- (ii) Discuss unbiasedness of an estimator
- (iii) Moment generating function of Poisson distribution
- (iv) Probability mass function of Binomial distribution
- (v) How will you construct two-sided alternative hypothesis?
- (vi) Define Type-I error
- (vii) Explain the uses of Central limit theorem.

(2,2,2,1,1,1,2,2)

SECTION-I

Q.2 (a) Explain the concept of unbiasedness of an estimator with the help of an example.

(b) Let x₁,...,x_n be a random sample from a binomial distribution with parameters 'n' and 'p'. Find the sufficient statistic for 'p'...

 $(6\frac{1}{2}, 6\frac{1}{2})$

- Q.3 (a) Define the method of maximum likelihood. Obtain maximum likelihood estimators for μ and σ^2 if sampling is from a normal population i.e $N(\mu, \sigma^2)$, both μ and σ^2 are unknown.
 - (b) Define Chi-square distribution and also obtain the test statistic for $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

(61/2, 61/2)

- Q.4 (a) Prove that sum of independent Poisson random variates is also a Poisson variate.
 - (b) Given a random sample $x_1, ..., x_n$ from a $N(\mu, \sigma^2)$ distribution, examine unbiasedess and consistency of

ii)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 for σ^2

 \overline{x} for u

(i)

 $(6\frac{1}{2}, 6\frac{1}{2})$

Q.5 (a) Describe the independence of sample mean and sample variance, if sampling is from $N(\mu, \sigma^2)$.

(b) Define t- distribution and its properties.

 $(6\frac{1}{2}, 6\frac{1}{2})$

(61/2, 61/2)

SECTION-II

Q.6 (a) Define

- (i) Null and Alternative hypothesis.
- (ii) Type II error
- (iii) Critical region and level of significance.

(b) Develop a test procedure for testing

$$H_0: \mu_1 = \mu_2$$
 against $H_1: \mu_1 \neq \mu_2$

when the two normal populations are independent and their variance are equal but known.

Q.7 (a) Discuss the test procedure for testing

 $H_0: \sigma_1^2 = \sigma_2^2$ against $H_1: \sigma_1^2 \neq \sigma_2^2$

when μ_1, μ_2 are unknown. Also obtain 100 (1- α)% C.I. for σ_1^2 / σ_2^2 .

(b) Fisher's Z- transformation and its uses.

Q.8 (a) Develop a test procedure for testing equality of two population proportions. Also obtain the expression for $100(1-\alpha)$ % confidence intervals for P_1-P_2 .

(b) Define Yate's correction and procedure of its implementation?

(61/2, 61/2)

(61/2, 61/2)

Q.9 Write short note on any two of the following:

- (a) Use of central limit theorem for testing and interval estimation of a single mean.
- (b) Chi-square test of goodness of fit.
- (c) Testing of difference of two population means in case of small samples, when the two populations are distributed normally.

(61/2, 61/2)