Note	Ou	estions : 7 Sub. Code : 0 4 4 8
	galet GTT A	Exam. Code: 0 0 0 5
		B.Sc. (General) 5 th Semester (1129)
		PHYSICS
		Paper—A: Condensed Matter Physics-I
Tim	e Allo	owed: Three Hours] [Maximum Marks: 22
Note	e :—	(1) Attempt five questions in all, selecting two questions each from Unit—I and Unit—II. Unit—III is compulsory.
		(2) Use of log tables and non programmable calculator is allowed.
		UNIT—I
I.	(a)	What are Miller indices? How can Miller indices be used
		to explain the set of crystal planes? Draw the crystal planes
		of cubic crystal with Miller indices (100).
	(b)	Explain why is five-fold symmetry of crystals is not possible. $1\frac{1}{2}$
II.	(a)	What is a reciprocal lattice? Show that the fcc lattice is
		reciprocal lattice of bcc lattice with lattice constant $\frac{2\pi}{a}$.
	(b)	Prove that Bragg's diffraction condition in terms of reciprocal
	(0)	lattice is $2\vec{k}.\vec{G} + G^2 = 0$. $1\frac{1}{2}$

(i)

Printed Pages: 3

Roll No.

- III. (a) Find the geometrical structure factor for bcc and explain the cause of absence of (100) reflection.
 - (b) The structure of silver (mass number = 108) is fcc. Calculate the density of silver if it has a lattice constant 4.077 Å.

11/2

UNIT-II

- IV. (a) Obtain the expression for fermi energy, total energy and density of states for a free electron gas in one dimension. Also show variation of density of states with energy.
 3
 - (b) Show that the average kinetic energy of three-dimensional free electron is $\frac{3}{5}$ times the fermi energy. 1½
- V. (a) Discuss Kronig-Penny model and also show that how the energy band formation takes place in solids.
 - (b) Derive an expression for the effective mass of an electron. $1\frac{1}{2}$
- VI. (a) Explain the need of doping of a pure semiconductor. Name the various types of n-type and p-type impurities. Derive an expression for the electrical conductivity of an intrinsic semiconductor.
 - (b) Explain Hall effect and write expression for Hall coefficient. 1½

UNIT-III

- VII. Attempt any eight questions. Each question carries ½ mark.
 - (a) What is meant by coordination number?
 - (b) What is Wigner-Seitz cell?
 - (c) Why cannot light waves be used for crystal diffraction?

- (d) State the Bragg's condition and mention some of it characteristics.
- (e) What do you mean by atomic scattering factor?
- (f) Semiconductors have negative temperature coefficient of resistance. Explain.
- (g) State Bloch theorem.
- (h) Explain Wiedemann-Frenz law.
- (i) What do you mean by density of states?
- (j) Write any two conclusions drawn from Kronig-Penny model.

 $8 \times \frac{1}{2} = 4$