(i)	Printed Pages: 3	Roll No.
-----	------------------	----------

(ii) Questions :9 Sub. Code : 0 4 5 1 Exam. Code : 0 0 0 5

B.A./B.Sc. (General) 5th Semester (1129)

CHEMISTRY

(Same for B.Sc. Microbiology and Food Technology)
Paper—XVII: Inorganic Chemistry—A

Time Allowed: Three Hours] [Maximum Marks: 22

- **Note**:— Attempt **five** questions in all, selecting at least **one** question from each Unit. Question No. 1 is compulsory.
- 1. (a) Describe the bonding in [FeF₆]⁻³ in terms of crystal field theory.
 - (b) What is the difference between thermodynamic stability and kinetic stability?
 - (c) What is EAN rule? Do you think [Co(NH₃)₆]⁺³ obeys EAN rule?
 - (d) Give the IUPAC name of the following:
 - (i) $K[PtCl_3(C_2H_4)]$
 - (ii) $\operatorname{Ni}(\pi C_5 H_5)_2$
 - (e) Explain why most of the tetrahedral complexes are high spin complexes.
 - (f) What is fractional oxygen saturation in myoglobin function?

 $1 \times 6 = 6$

UNIT—I

2.	(a)	Discuss the crystal field splitting of d -orbitals in $d^3(Td)$ $d^7(Td)$.	and 2
	(b)	How does the crystal field theory explain the color coordination compounds?	or of
3.		cuss the various factors affecting the magnitude of crystal ting, Δ_0 .	field 4
		is a me for E.Sc., Vis II—IIIV and Food Technology	
4.	(a)	How chelation increases the stability of a complex?	2
	(b)	Derive the relationship between stepwise and overall stab constant.	oility 2
5.	(a)	Discuss the Polarization Theory of trans effect.	2
	(b)	Discuss and show stereochemistry of substitution in following reaction:	the
		$[PtCl_4]^{-2} \xrightarrow{NH_3} \xrightarrow{NO_2}$	2
		UNIT—III	
6.	(a)	Discuss the structure of Fe ₂ (CO) ₉ .	2
	(b)	Complete the reactions:	
		(i) $K_2PtCl_4 + C_2H_2 \rightarrow$	
		(ii) $Fe(CO)_5 + NaOH \rightarrow$	2
7.	(a)	How does an IR spectrum help in explaining bonding	and
		geometries of metal-carbonyl complexes?	2
	(b)	Outline the preparation of organolithium compounds. Dr	raw
		the structure of methyl lithium tetramer.	2

UNIT-IV

- 8. Discuss in detail $Na^+ K^+$ pump in biological systems. 4
- 9. (a) What do you understand by co-operativity in hemoglobin?
 - (b) The reduction of N_2 to NH_3 is thermodynamically favourable ($\Delta G = -ive$). In biological systems, still ATP molecule is required for energy requirement. Comment.