(i) Printed Pages : 3

Roll No.

(ii) Questions : 9

 Sub. Code :
 0
 4

 Exam. Code :
 0
 0

B.A./B.Sc. (General) 5th Semester (1129) CHEMISTRY

(Same for B.Sc. Microbiology and Food Technology) Paper—XIX : Physical Chemistry—A

Time Allowed : Three Hours] [Maxi

[Maximum Marks : 22

Note :— Attempt five questions in all, selecting at least one question each from Units I to IV and Unit V is compulsory. Use of log tables and simple calculators is allowed.

UNIT-I

- I. (a) Derive Planck's radiation law. How can it be verified experimentally?
 - (b) Apply Schrodinger wave equation to a particle in one dimensional box and obtain the expression for the eigen function and eigen value of energy. 2,2
- II. (a) Discuss the postulates of quantum mechanics.
 - (b) Find the commutator of the operators for momentum and position, the two conjugate properties of Heisenberg's uncertainty principle.
 2,2

UNIT-II

- III. (a) How are three dimensional contour diagrams used to represent the electron probability density for bonding and anti bonding molecular orbitals ?
 - (b) Apply quantum mechanical principles to calculate the coefficients of atomic orbitals in sp² hybrid orbitals. 2,2
- IV. (a) Write expression for Ψ_{MO} for H_{2+} ion according to LCAO method. Starting from it, how do you arrive at the expression for $\Psi_{+(MO)}$ and $\Psi_{-(MO)}$?
 - (b) What do you understand by gerade and ungerade molecular orbitals? What is the criteria to check whether a molecular orbital is gerade or ungerade? Explain with suitable examples.

2.2

UNIT-III

- V. (a) State and explain Grotthus-Draper law and Stark-Einstein's law of photochemical equivalence.
 - (b) The percentage transmittance of an aqueous solution of disodium fumarate at 250 nm and 298 K is 19.2% for a 5×10^{-4} molar solution in a 1 cm cell. Calculate the absorbance A and the molar absorption coefficient ϵ . What will be the percentage transmittance of a 1.75×10^{-3} molar solution in a 10 cm cell? 2,2
- VI. (a) What do you understand by the terms spin multiplicity, singlet states and triplet states ? Explain phenomenon of fluorescence and phosphorescence using Jablonski diagram.
 - (b) Calculate the value of Einstein in kilo joules for orange light with $\lambda = 600$ nm. 2,2

0453/FF-7609

UNIT-IV

- VII. (a) Explain why photosynthesis of HCl has very high quantum yield while that of photosynthesis of HBr is very low.
 - (b) What is photosensitization ? Explain with two suitable examples. 2,2
- VIII. (a) What mechanism has been proposed for the photolysis of ammonia?
 - (b) For the photochemical reaction A → B, 1.0 × 10⁻⁵ moles of B were formed on absorption of 6.0 joules at 3600 Å. Calculate the quantum efficiency.

UNIT-V

(Compulsory Question)

- IX. (i) What is sinusoidal wave equation?
 - (ii) Compare the important characteristics of σ and π molecular orbitals.
 - (iii) Write expression for Compton shift and explain the results obtained for scattering angles of 0°, 90° and 180°.
 - (iv) What is resonance fluorescence ? Give one example.
 - (v) Briefly explain Kirchhoff's law about black body radiation.
 - (vi) What is the difference between a photochemical and thermo chemical reaction ?6×1=6

10000