B.Sc. (Hons.) Biotechnology First Semester BIOT-Sem-I-III-T (a): Mathematics

Time allowed: 3 Hours

Max. Marks: 67

[4]

NOTE: Attempt <u>five</u> questions in all, including Question No. 9 (Section-C) which is compulsory and selecting two questions each from Section A-B.

x - x - x

Section A

1. (a) Find the modulus and principal argument of the complex number $-\sqrt{3} + i$. [4]

- (b) Convert $\frac{1+7i}{(1-2i)^2}$ in the polar form. [4]
 - (c) If $z_1 = 2 i$, $z_2 = 1 + i$ then find $\left|\frac{z_1 + z_2 + 1}{z_1 z_2 + 1}\right|$. [5]
- 2. (a) Prove that $\sqrt{5}$ is an irrational number.

(b) Find the value of
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}$$
. [4]

(c) Evalute
$$\lim_{x \to 1} \frac{\sin(1-x)}{\sqrt{1-x^2}}.$$
 [5]

3. (a) Find the union of the following pairs of sets $A = \{x : x \text{ is a natural number and } 1 < x \le 6\} B = \{x : x \text{ is a natural number and } 6 < x < 10\}$. [4]

(b) Let $f, g: R \to R$ be defined by $f(x) = x^2 + 1$ and g(x) = x + 2 then find fog and gof. [4]

- (c) Draw the graph of the function $f(x) = x^2; x \in \mathbb{R}$. [5]
- 4. (a) Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$. [4]
 - (b) Evaluate $\lim_{x \to 1} (\frac{2}{1-x^2} \frac{1}{x-1}).$

14.6.0.61 - 81.10

(c) Find all the points of discontinuity of the function defined by

$$f(x) = \begin{cases} x+2 & \text{if } x < 1\\ 0 & \text{if } x = 1\\ x-2 & \text{if } x > 1 \end{cases}$$

[5]

[4]

Section B

5. (a) Find
$$\frac{dy}{dx}$$
 if $ax + by^2 = \cos y$. [5]

(b) Differenciate the given function with respect to x, where $f(x) = (\log x)^{\cos x}$.

(c) Find the local maximum and minimum values of the function f given by $f(x) = 2x^3 - 6x^2 + 6x + 5$. [4]

[4]

[4]

6. (a) Evaluate $\int x \sin x dx$.

(b) Using integration find the area of the region bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2). [5]

(2)

(c) Find
$$\frac{dy}{dx}$$
 when $x = a(\theta - \cos 2\theta), y = \sin \theta - \sin 2\theta$. [4]

7. (a) Solve the following Linear Programming Problem graphically: Maximise Z = 5x + 3y subject to $3x + 5y \le 15, 5x + 2y \le 10, x \ge 0, y \ge 0$ [7]

(b) Consider the marks, out of 100, obtained by 39 students of a class in a test, given in the Table below. Draw a frequency polygon for the given data.

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of students	5	10	4	6	7	3	2	2

[6]

[7]

[6]

8. (a) Calculate the mean, Variance and Standard Deviation for the following distribution.

Classes	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

(b) From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Section C

9. (a) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$ find $(A \cup B)'and(A')'$ [2]

(b) Evaluate
$$\int \frac{dx}{\sqrt{5x^2 - 2x}}$$
. [2]

(c) Find the mediam for the following data: 23, 12, 18, 14, 75, 43, 32, 18. [2]

(d) Form a differential equation representing the given family of curves by eleminating arbitrary constants a and b, $y = ae^{3x} + be^{-2x}$. [3]

(e) Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+1}{2-y}$. [2]

(f) Find the dgree and order of the differential equation $\frac{d^3y}{d^3x} - \sqrt{\frac{dy}{dx}} + 3.$

(g) Evaluate $\int x \log 2x dx$.

[2]

[2]