(i) Printed Pages: 3

Roll No.

 (ii) Questions : 14
 Sub. Code :
 0
 8
 2
 0

 Exam. Code :
 0
 0
 1
 3

Bachelor of Commerce 3rd Semester (1129) BUSINESS MATHEMATICS AND STATISTICS Paper—BCM-304

Time Allowed : Three Hours] [Maximum Marks : 80

Note :- (1) Attempt any *four* questions from Section-A.

- (2) Attempt any two questions from Section-B.
- (3) Attempt any two questions from Section-C.

SECTION-A

I. Define Elementary Column transformation and show that :

 $\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0.$

II. Define inverse of a matrix and verify : $(AB)^{-1} = B^{-1}A^{-1}$ for the matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}.$$

III. If $e^x + e^y = e^{x+y}$ then show that,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\mathrm{y}-\mathrm{x}} \, .$$

IV. Define average and discuss its objectives in brief.

0820/FF-7626

[Turn over

V. From the following, compute Q_1 and Q_3 : X = 10 20 30 40 50 60 70 Y = 2 3 5 10 5 3 2 VI. Give in brief the methods of collecting Primary Statistical data

VI. Give in brief the methods of collecting Primary Statistical data. 4×5=20

SECTION-B

VII. Given A =
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
, verify that AA⁻¹ = A⁻¹A = I₃

where I₃ is identity matrix of order 3. VIII. (a) Show that :

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

(b) Solve the following system of equations by inverse method :

$$2x_{1} - x_{2} + 3x_{3} = 9$$
$$x_{2} - x_{3} = -1$$
$$x_{1} + x_{2} - x_{3} = 0$$

IX. Differentiate $(\log x)^{\log x} + (1 + x)^{2x}$ w.r.t. x.

X. Find maxima and minima of $\frac{(x-1)(x-6)}{x-10}$ or $\frac{x^2-7x+6}{x-10}$ or

$$\frac{2x^2 - 14x + 12}{2x - 20}.$$
 2×15=30

0820/FF-7626

SECTION-C

- XI. Define Index Number and discuss its types.
- XII. Calculate Karl Pearson's coefficient of skewness from the following data :

Marks	0–10	10–20	20–30	30-40	40–50	
Frequency	8	11	26	9	6	

- XIII. Define primary and secondary data. Explain various methods of collecting primary data.
- XIV. Fit a straight line to the following data taking X as the independent variable :

X	2011	2012	2013	2014	2015	2016	
Y	1	1.8	3.3	4.5	6.3	10	
					2×15=3		30