(i) Printed Pages: 3

Roll No.

(ii) Questions : 8

 . Sub. Code :
 0
 0
 4
 5

 Exam. Code :
 0
 0
 0
 1

B.A./B.Sc. (General) 1st Semester 1128 MATHEMATICS Paper-III : Trigonometry and Matrices

Time Allowed : Three Hours][Maximum Marks : 30Note :— Attempt five questions in all by selecting at least
two questions from each unit.

UNIT-I

(a) If a = cis α, b = cis β, c = cis y and a + b + c = 0. Then prove that :

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$
.

(b) If α and β are the roots of $x^2 - 2x + 4 = 0$, prove that :

$$\alpha^{n} + \beta^{n} = 2^{n+1} \cos \frac{n\pi}{3}.$$
 3,3

- (a) Solve x⁷ = 1 and prove that the sum of the nth powers of the roots is 7 or zero according as n is or not multiple of 7.
 - (b) Prove that :

 $\cos^{7} \theta = \frac{1}{2^{6}} \left[\cos 7\theta + 7 \cos 5\theta + 21 \cos 3\theta + 35 \cos \theta \right].$ 3,3

0045/EPY-7106

Turn over

3. (a) If $\sin (\theta + i\phi) = \tan \alpha + i \sec \alpha$, show that : $\cos 2\theta \cosh 2\phi = 3$.

(b) If $\cos(\theta + i\phi) = r(\cos \alpha + i \sin \alpha)$, then prove that :

$$\phi = \frac{1}{2} \log \frac{\sin(\theta - \alpha)}{\sin(\theta + \alpha)}.$$
 3,3

4. (a) For α , $\beta \in C$, $\beta \neq 2n\pi$, $n \in z$, show that : $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + \alpha\beta) + \dots + \cos (2\alpha(n-1)\beta)$

$$=\frac{\cos\left(\alpha+\frac{n-1}{2}\beta\right)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$$

(b) Prove that :

$$1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{2 | 2}$$

UNIT-II

- 5. (a) Show that every Hermitian Matrix A can be uniquely expressed as P + iQ, where P and Q are real symmetric and real skew symmetric matrices respectively. Also show that $A^{\theta}A$ is real iff PQ = -QP.
 - (b) Check for the linear dependence of the following system of vectors : u = (1, -1, 1), v = (2, 1, 1), w = (3, 0, 2). If dependent, find the relation between them. 3,3

6. (a) Find the rank of the matrix

	3	2	0	9
by	6	5	1	0
1997 - 19	0	3	5	4

3,3

reducing it to normal form.

0045/EPY-7106

(b) Express the following matrix as the sum of a Hermitian and Skew Hermitian matrix :

2-i	3	1+i
-5	0	- 6i
7	i	-3+2i

7. (a) Find the value of k so that the equations :

 $\begin{aligned} x - 2y + z &= 0\\ 3x - y + 2z &= 0 \end{aligned}$

y + kz = 0 have

(i) a unique solution, (ii) infinitely many solutions. Also find solutions for these values of k.

- (b) Find values of λ and μ for which the system of equations :
 - x + y + z = 6

x + 2y + 3z = 10

 $x + 2y + \lambda z = \mu$ has

(i) no solution, (ii) a unique solution, (iii) an infinite number of solutions. 3,3

- 8. (a) State and prove Cayley-Hamilton theorem.
 - (b) Check whether the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 4 & 9 \end{bmatrix}$ is diagonalizable or not. 3,3

0045/EPY-7106

3.3