(i) Printed Pages : 2

(ii)

Questions : 8 Sub. Code : 0 2 Exam. Code : 0 0 0

Roll No.

B.A./B.Sc. (General) 3rd Semester 1128 MATHEMATICS Paper–II (Differential Equations—I) Time Allowed : Three Hours] [Maximum Marks : 30

- **Note** :-- (1) Attempt **five** questions in all, selecting at least two from each Unit.
 - (2) Each question carries equal marks.

UNIT-I

 (a) Find the necessary and sufficient condition that the equation Mdx + Ndy = 0 (where M and N are functions of x and

y with the condition that M, N, $\frac{\partial M}{\partial v}$, $\frac{\partial N}{\partial x}$ are continuous functions of x and y) may be exact. 3 Solve $(2x^2y^2 + y)dx - (x^3y - 3x)dy = 0$. 3 (b) Solve $y = 2px + y^2p^3$. (a) 3 Solve $x^2(y - px) = p^2y$. 3 **(b)** (a) Solve and test for singular solution : $p^3 - 4pxy + 8y^2 = 0$ 3 Find the orthogonal trajectory of the curve $x^2y = c$. 3 **(b)**

2.

3.

4. (a) Solve the differential equation :

$$\frac{d^{3}y}{dx^{3}} - 5\frac{d^{2}y}{dx^{2}} + 7\frac{dy}{dx} - 3y = e^{2x}\cosh x$$

(b) Solve
$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$
.

UNIT-II

5. (a) Solve $(x^2D^2 - xD + 4)y = \cos(\log x) + x \sin(\log x)$.

(b) Define Legendre's linear equation and solve it.

6. (a) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx}(\tan x) + 3y = 3\tan^2 x \sec x$. 3

(b) Use method of reduction of order to solve :

$$\frac{d^2y}{dx^2} + 16y = \sec 4x .$$

7. (a) Solve
$$x^2 \frac{d^2 y}{dx^2} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$$
. 3

- (b) Solve (D² + 4)y = 4 sec²2x by the method of variation of parameters.
 3
- 8. Verify that $y = e^x$ is a solution of (x 1)y'' xy' + y = 0. Use this fact to find the general solution of (x - 1)y'' - xy' + y = 1.

3

3

3

3