1128 Bachelor of Arts (General), 3rd Semester Statistics Paper - 201: Statistical Inference

Time allowed: 3 Hours

Note: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions each from Unit – I and Unit - II.

0-0-0

- I. Attempt the following questions:
 - a) Define unbiased and consistent estimator.
 - b) Define sample proportion. Obtain its standard error.
 - c) Give an example of an estimator which is consistent but not unbiased.
 - Explain Type I and Type-II errors.
 - e) Define a maximum likelihood estimator
 - f) Distinguish between level of significance and p-value. (6×2)
 - g) Define a consistent estimator

<u>UNIT – I</u>

II. a) Let $X_1, ..., X_n$ be independent random variables such that X_i follows Poisson distribution with parameter $\lambda i, c = 1, ..., n$. Obtain the sampling distribution

of:
$$Y = \sum_{i=1}^{n} x_i$$

- b) State the uses of the result that sample mean and sample variance of a random sample from a normal distribution are independently distributed. (9,4)
- III. a) Define an F-Statistic. Derive its probability density function.
 - b) What are the applications of F-test?
- IV. Let X₁, ..., X_n be a random sample from:
 - i) Poisson distribution with parameter λ . Find maximum likelihood estimator of λ .
 - ii) Binomial distribution with parameters N and P. Find maximum likelihood estimator of P. (6,7)
- V. a) Define a chi-square random variable. Derive its probability mass function.
 - b) What are the applications of chi-square statistic?

<u>UNIT – II</u>

- VI. Let X₁, ...,X_N be a random sample from a binomial distribution with parameters n and p. Explain a large sample test for testing a hypothetical value of p. Also construct 100 (1-∞) % confidence interval for p. (13)
- VII. a) Define a goodness of fit problem. Discuss chi-square test of goodness of fit.
 - b) Explain a test for testing the independence of two attributes each at two levels. Also explain the Yate's correction. (6,7)

VIII. Let X₁, ..., X_m and Y₁, ..., Y_n be random samples from N (μ_1, σ_1^2) and N (μ_2, σ_1^2) . Propose a test for testing H₀: $\mu_1 = \mu_2$ against all the three types of alternatives when σ^2

is unknown. Also construct 100 (1- \propto) percent confidence interval for the difference $\mu_1 - \mu_2$. (13)

- IX. a) Explain a test for testing the significance of sample correlation coefficient.
 - b) Discuss a large sample test for testing the hypothetical value of population correlation coefficient. (6,7)

Max. Marks: 65

(9,4)

(1)

(9,4)