(i) Printed Pages: 3

Ouestions

(ii)

8:3 Roll No. 9 Sub. Code : 3 6 Exam. Code : 0 4

M.Sc. Information Technology 3rd Semester 1128 THEORY OF COMPUTATION Paper : MS-69

Time Allowed : Three Hours][Maximum Marks : 80Note :— Attempt five questions in all. Question No. 9 (Section-E)
is compulsory and selecting one question each from
Sections-A to D.

SECTION-A

- 1. (i) Write short notes on DFA and NFA.
 - (ii) Define a DFA that read strings made up of letters in the word CHARIOT and recognize those strings that contain the word CAT as a substring.
 8
- 2. (i) Write short note on Chomsky hierarchy of languages.
 - (ii) Discuss Moore machine and conversion from Moore machine to Mealy machine using suitable examples.

3619/EPY-10723

[Turn over

8


8

8

1

SECTION-B

3. (i) Convert the automata given in diagram below from NFA to DFA.

(ii) Prove that $L = \{a^n b^n, n \ge 1\}$ is regular language or not.

8

8

- 4. (i) Write regular expressions for the following language on {0, 1}.
 - (a) All strings ending in 01
 - (b) All strings not ending in 01.
 - (ii) Write short note on construction of FA equivalent to regular expression using suitable example.

SECTION-C

- 5. (i) Discuss CYK algorithm using suitable example. 8
 - (ii) Convert the grammar with following productions to Chomsky normal form :

$$S \rightarrow ABa, A \rightarrow aab, B \rightarrow Ac.$$
 8

- 6. (i) Construct a pda or npda that accepts the language generated by grammar with productions : S → aSbb | aab.
 - (ii) Discuss procedure of conversion to Greibach normal form using suitable example.

3619/EPY-10723

SECTION-D

- 7. (i) Discuss turing machine in detail.
 - (ii) What is halting problem ? Is it decidable or undecidable ?
- 8. (i) Construct a Turing machine for L = {0ⁿ1ⁿ | n ≥ 1}. 8
 (ii) Write short note on post correspondence problem. 8

SECTION-E

(Compulsory Question)

- 9. (i) Differentiate between NFA- \in and NFA.
 - (ii) Prove : if L_1 and L_2 are two regular languages, then $L_1 \cup L_2$ is regular.
 - (iii) Define Chomsky and Greibach Normal forms.
 - (iv) Discuss post correspondence problem. $4 \times 4 = 16$

8

8