(i) Printed Pages : 3

(ii) Questions : 9

 • Sub. Code :
 3
 7
 0

 Exam. Code :
 0
 4
 7

Roll No.

M.Sc. Physics Ist Semester 1128 QUANTUM MECHANICS–I Paper–PHY-6003

Time Allowed : 3 Hours]

[Maximum Marks: 60

6

6

Note :- Attempt **five** questions in all taking **one** question each from Units I–IV and the compulsory question from Unit–V.

UNIT-I

- 1. (a) Write a note on Dirac Bra, Ket notation.
 - (b) Given two operators A and B such that [A, B] = iC, show that the uncertainties in A, B in any arbitrary state are related

by $\Delta A \ \Delta B \ge \frac{1}{2} < C >$.

- (a) Solve simple harmonic oscillator by operator algebra, for its eigen values and eigen vectors.
 8
 - (b) State the properties of :
 - (i) inner product
 - (ii) projection operator.

3704/EPY-10163

Turn over

2,2

UNIT-II

3. (a) Using basic commutator $[x_i, p_j] = i\hbar \delta_{ij}$, i,j = x, y, z, $\vec{L} = \vec{x} \times \vec{p}$ work out the commutators i) $[L_y, p_x]$, $[L_z, y]$ and $[L_x, L_y]$. 2,2,2

(b) For $\vec{J}_1 = \frac{1}{2}$, $\vec{J}_2 = \frac{1}{2}$ obtain the Clebsch-Gordon coefficients.

- 4. (a) Obtain the matrix representation for operators J^2 , J_z for $J = \frac{1}{2}$.
 - (b) Find out the eigen values and eigen vectors of operator L_z .

UNIT-III

5.	(a)	Write a note on variational method.	6
	(b)	Write a note on degenerate perturbation theory.	6

- 6. (a) Develop the non-degenerate perturbation theory and obtain expression for the first order correction and second order correction expression for energy.
 8
 - (b) Second order correction to ground state energy is always negative, in non-degenerate perturbation theory. Explain why.

3704/EPY-10163

4

6

4

UNIT-IV

- 7. Obtain the general expression for the probability of transition from one state to other, of a system under the influence of a constant time dependent perturbation (V(t) = 0 at t = 0 and constant thereafter).
 12
- 8. (a) Explain Fermi Golden rule and its application to radiative transitions in atoms. 6
 - (b) What are selection rules for emission and absorption of light?

UNIT-V

(a)	Define Hilbert space.	2
(b)	State two postulates of quantum mechanics.	2
(c)	How does a quantum system evolve in Schrodin	ger
	representation and in Hiesenberg representation?	2
(d)	What are commuting operators (C.S.C.O.)? How are t	hey
	useful ?	2
(e)	Construct three identical particle, completely antisymmet	ric,
	normalized wave function.	2
(f)	What is the first order correction to hydrogen atom in grou	ind
	state, due to Stark effect ?	2

3

9.