(i)	Printed Pages: 4		Roll No.				
(ii)	Questions	:9	Sub. Code:	3	7	1	9
			Evam Code	0	4	7	4

M.Sc. Physics 3rd Semester 1128

CONDENSED MATTER PHYSICS-I Paper-PHY-7004

Time Allowed: 3 Hours [Maximum Marks: 60

Note :- Attempt **one** question each from Unit (I—IV). Unit-V is compulsory. In all attempt **5** questions.

UNIT-I

- 1. (i) What are ionic crystals? Explain the formation of an ionic crystal and obtain an expression for its cohesive energy.
 - (ii) Calculate the compressibility of sodium chloride assuming a repulsive potential of the from B/r⁹ to act between neighbors.
 Nearest neighbors distance 'r' = 0.281 nm and Madelung constant is 1.7476.
- 2. (i) Show that an isotropic crystal has only two independent elastic constants. What is the scheme of elastic constants for an isotropic crystal in the matrix representation?
 - (ii) Prove that in a one dimensional diatomic lattice, both acoustic and optic branches in dispersion curve meet the zone boundary normally.

UNIT-II

 Show that in the tight-bonding approximation, the energy E(k) for b.c.c. lattice is given by

$$E(\vec{k}) = E_a - \beta - 8 \gamma \cos(a/2) k_x \cos(a/2) k_y \cos(a/2) k_z$$

Discuss the shape of constant energy surface in (\vec{k}) -space.

12

 Derive the wave equation for an electron moving in the following potential field

$$U(x) = 0$$
 for $0 < x < a$; and $u(x) = V_o$ for $a < x < b$
and periodically repeated outside that interval. Show that for $E < V_o$ it leads to the following equation

$$[(\beta^2 - \alpha^2)/2\alpha\beta] \sinh \beta b \sin \alpha a + \cosh \beta b \cos \alpha a = \cos K(a+b)$$
where $\alpha^2 = 2 \text{ mE/}\hbar^2$; $\beta^2 = 2\text{m}(V_0 - E)/\hbar^2$.

UNIT-III

- 5. (i) Define thermopower in metals. Why is it difficult to measure thermopower experimentally? Discuss a method in brief of the experimental measurement of thermopower.
 - (ii) The electrical and thermal conductivity of silver at 20°C are $6.22\times 10^7\,\Omega^{-1}\,\text{m}^{-1}\,\text{and}\,423\,\,\text{Wm}^{-1}\text{K}^{-1}\,\text{respectively}.\,\text{Calculate}$ Lorentz number on the basis of quantum free electron theory.

- 6. (i) Employing the Boltzmann transport equation, find an expression for the electronic thermal conductivity of metals.
 - (ii) The relaxation time of a conduction electron in copper is 3.5×10^{-14} s. An electric field of 2.5 V/cm is applied along negative x-axis. Calculate the increase in the x-component of velocity between two collisions. What is the average increase in energy of the electron between two collisions?

7,5

UNIT-IV

- 7. (i) What is meant by polarization mechanism in dielectrics? Discuss the different polarization mechanisms in dielectrics and explain their temperature dependence.
 - (ii) The Bakelite is found to have the real part of its complex relative dielectric constant as 4.36 with a loss tangent of 2.8×10⁻² at a frequency of 1 Hz. Calculate the complex polarizability of the materials assuming Lorentz field.
 (Given N = 4×10²⁸/m³).
- (i) Derive the Clausius-Mosotti equation and explain how it can be used to determine the dipole moment of a polar molecule from the dielectric constant measurements.
 - (ii) Discuss the Weiss theory of ferroelectricity. Give some applications of ferroelectric materials. 8,4

UNIT-V

(Compulsory)

- 9. Attempt all questions:
 - (a) What are reciprocal lattices?
 - (b) Explain metallic bonding in solids.
 - (c) Explain Bloch theorem.
 - (d) Define magnetoresistance by taking one example.
 - (e) What is dielectric loss? Explain it.
 - (f) Differentiate between antiferroelectricity and ferrielectricity.

 $6 \times 2 = 12$