Printed Pages: 3 (i)

2

Roll No.

(ii)

Sub. Code : 0 1 6 **Ouestions** : 8 Exam. Code : 0 0

> B.A./B.Sc. (General) 2nd Semester 1059

MATHEMATICS

Paper : II Calculus-II

Time Allowed : Three Hours]

[Maximum Marks: 30

Note :- Attempt FIVE questions in all selecting at least TWO questions from each unit. Each question carries 6 marks.

UNIT-I

Find the intervals in which the curve 1. (a)

$$y = \frac{x^2 + 1}{x^2 - 1}$$

is concave upwards and concave downwards.

(b) Find the points of inflexion of the curve

y = (sin 4x + cos 4x) e^{4x}, 0 < x <
$$\frac{\pi}{2}$$
. 3,3

2. (a) Find the position and nature of double points on the curve $(x - 2)^2 = y(y - 1)^2$.

(b) Find the equation of the cubic, which has the same asymptotes as the curve

 $x^{3} - 6x^{2}y + 11xy^{2} - 6y^{3} + 4x + 5y + 7 = 0$ and which passes through the points (0, 0), (-2, 0) and (0, -2). 3,3

- 3. (a) Trace the curve $y = x + \frac{1}{x}$.
 - (b) Prove that the curvature of a circle is constant and is equal to the reciprocal of the radius. 3,3
- (a) Find the co-ordinates of the centre of curvature at any point (x, y) of the parabola y² = 4ax. Also find its evolute.
 - (b) If c_x, c_y be the lengths of the chords of curvature parallel to the co-ordinate axes at any point of the curve

$$y = c \cosh \frac{x}{c}$$
, then prove that $4c^2(c_x^2 + c_y^2) = c_y^4$. 3,3

UNIT-II

5. (a) Evaluate
$$\int \frac{2\sinh x + 3\cosh x}{\cosh x + 2\sinh x} dx$$
.

(b) If
$$I_{m,n} = \int_{0}^{\pi/2} \cos^{m} x \sin nx \, dx$$
, then show that

$$I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1,n-1} \qquad \begin{bmatrix} m, n \in I^+ \\ m+n \neq 0 \end{bmatrix}$$

3,3

Hence evaluate I, 3.

0146/FQZ-16667

2

6. (a) Use Trapezoidal Rule to evaluate

 $\int_{0}^{\pi/4} \sin 4x \, dx$ by dividing the interval $[0, \pi/4]$

into four equal subintervals.

(b) Evaluate
$$\lim_{n\to\infty} \frac{1}{n} \sum_{r=1}^{n} \left(\sin \frac{\pi r}{2n} \right)^{2k}$$
. 3,3

- (a) Find the area above the x-axis included between the curves y² = 2ax x² and y² = ax.
 - (b) Find the length of the loop of the curve

$$9ay^2 = x(x - 3a)^2, a > 0.$$
 3,3

- 8. (a) Find the volume generated by revolving the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ about its major axis.
 - (b) Find the surface area of the solid obtained by revolving the arc of the curve y = sin x from x = 0 to x = Π about x-axis.

3


Printed Pages : 2

Roll No.

Ouestions (ii) :8

(i)

Sub. Code: 0 Exam. Code: 0

B.A./B.Sc. (General) 2nd Semester

1059

MATHEMATICS **Paper-III Theory of Equations**

Time Allowed : Three Hours] [Maximum Marks : 30

- Note :- (1) Attempt five questions in all by selecting at least two questions from each unit.
 - All questions carry equal marks. (2)

UNIT-I

- 1. (a) Find a real polynomial f(x) of least degree having roots -2, $1 + \ell$ and satisfying f(3) = 15. 3
 - Solve the equation $x^6 4x^5 11x^4 + 40x^3 + 11x^2 4x 1 = 0$, (b) given $\sqrt{2} + \sqrt{3}$ is root of equation. 3
- Solve the equation $x^4 2x^3 + 4x^2 + 6x 21 = 0$, given one 2. (a) root is negative of the other. 3
 - Solve $3x^4 40x^3 + 130x^2 120x + 27 = 0$, roots being (b) in G.P. 3

Turn over

- 3. (a) Let f(x) = a₀ + a₁x + a₂x² + +a_nxⁿ be a real polynomial of degree n and a₀ is non zero. Let r and s be the number of variations of sign in f(x) and f(-x) respectively. Show that n-r-s is even.
 - (b) Show that the equation $2x^7 + 3x^4 + 3x + k = 0$ has at least four non real roots for all values of k. 3
- 4. (a) Solve the equation $3x^3 22x^2 + 48x 32 = 0$, given that roots are in H.P. 3
 - (b) Find the equation whose roots are squared difference of the roots of equation $x^3 + 6x^2 + 9x + 4 = 0$. Hence show that the given equation has double roots. 3

UNIT-II

- 5. (a) Prove that $\sqrt{5} \sqrt{2}$ is an irrational number.
 - (b) Solve by Newton's method of divisors $x^5 - 29x^4 - 31x^3 + 31x^2 - 32x + 60 = 0.$
- 6. (a) Solve the cubic $x^3 + 6x^2 + 9x + 4 = 0$ by Carden's method.
 - (b) Show that the parabola $y = x^2$ meets the hyperbola xy + 8x + 4y + 3 = 0 in a single point. 3
- 7. (a) Find the roots of equation $x^3 3x + 1 = 0$ by rigonometric Method. 3
 - (b) Use Newton's Method of approximation to find the positive root of $x^3 x^2 3 = 0$ correct to four decimal places.3
- 8. (a) Solve the equation $x^4 8x^2 24x + 7 = 0$ by Descarte's method. 3

(b) Solve by Ferrari's method $x^4 - 4x^3 + 4x^2 - 4x + 3 = 0$.

0147/FQZ-16668

13000

3

3

3