Exam. Code: 0002

Sub. Code: 0183

1059

B.A./B.Sc.(General)-2nd Semester

Industrial Chemistry

Paper-B: Material and Energy Balance

Time allowed: 3 Hours			- W-1		Max. Marks		Marks: 75
NOME	4			1. 0 .	37 717	(T. T. T. T.	1.1.

NOTE

	-	<u>five</u> questions in all, including Question No. LX (Unit-V) which is ory and selecting one question each from Unit I-IV.						
		**_						
		<u>UNIT - I</u>						
1.	(a)	Calculate equivalent weights and molecular weights of the following: -						
		(i) $KMnO_4$ (ii) SO_4^{-2} (iii) H_2SO_4						
		(iv) $Ca(OH)_2$ (v) $NaOH$						
	(b)	Explain the terms open and closed systems with suitable examples.						
		(10+5)						
II.	(a)	(a) Find mole fractions of each component in given solutions:-						
		(i) 30% NaOH+70% H ₂ O (wt./wt.)						
		(ii) $20g H_2SO_4 + 80g H_2O$						
		(iii) A binary solution of two components consists of a component						
		m whose mole fraction is 0.12. Find the mole fraction of						
		second component n.						
		(iv) 2 moles of HCl+98 mole of H ₂ O.						
		(v) A solution is made of three components. What is the sum of all						
		mole fractions?						
	(b)	Taking a suitable example explain the concept of limiting reactant.						
		<u>UNIT – II</u> (10+5)						
III.	(a)	(i) What is the enthalpy of formation of H ₂ , N ₂ and O ₂ at NTP?						
	(4)	(ii) Define the term enthalpy of formation giving one example.						
		(iii) Define the term enthalpy of combustion giving one example.						
	(b)	Explain the concept of batch and continuous distillation. (9+6)						
	(0)	Explain the concept of catch and continuous distinutions						
IV.	(a)	What is distillation? Give types of distillations with suitable examples.						
	(b)	What are azeotropes? Explain distillation of azeotropes. (8+7)						
		UNIT – III						
V.	(a)	Draw a neat labeled sketch of a falling film evaporator and explain its						
	(1-)	functioning.						

What is filtration? Write a note on different filter media.

Contd....P/2

Sub. Code: 0183

(2)

- VI. (a) What are different types of evaporators? Give a brief account.
 - (b) Name different types of dryers used in drying process. Give uses of dryers briefly. (8+7)

UNIT-IV

- VII. (a) What are boilers? Explain functioning of any one type of boiler.
 - (b) Give disadvantages of fuel combustion. (8+7)
- VIII. (a) What are different techniques of water purification? Give a brief account.
 - (b) Draw a well labeled diagramme for plate heat exchangers. (8+7)

UNIT-V

- IX. Answer the following in about 20-30 words each: -
 - (a) Define colorific value.
 - (b) What are disadvantages of using hard water?
 - (c) Differentiate between drying and evaporation.
 - (d) Define molality.
 - (e) Give an example of a multicomponent system.
 - (f) Which fuel causes least pollution out of Diesel, petrol, CNG, Solar energy? Which one will cause highest pollution?
 - (g) Convert one poise into SI units.
 - (h) How many moles of C are present in 0.25ml of C₆H₁₂0₆?
 - (i) What are non ideal solutions?
 - (j) Name different types of heat exchanges. $(10 \times 1\frac{1}{2})$

**_*