(i) Printed Pages: 4

Roll No.

(ii) Questions

 Sub. Code :
 0 3

 Exam. Code :
 0 0

: 8

1059

MATHEMATICS

Paper-I (Advanced Calculus-II)

Time Allowed : Three Hours]

[Maximum Marks : 30

0

Note :— Attempt five questions in all, selecting at least two questions from each unit. All questions carry equal marks.

UNIT-I

1. (a) Prove that the sequence $\{a_n\}$, $a_n = \frac{3n-1}{4n+5}$ is :

- (i) monotonically increasing
- (ii) bounded above
- (iii) converges to $\frac{3}{4}$.
- (b) Prove that the sequence $\{a_n\}$ where :

$$a_{n} = \frac{1}{\sqrt{2n^{2} + 1}} + \frac{1}{\sqrt{2n^{2} + 2}} + \dots + \frac{1}{\sqrt{2n^{2} + n}}$$

converges to $\frac{1}{\sqrt{2}}$.

0341/FQZ-16691

[Turn over

3

2. (a) If s_1 and s_2 are positive and $s_{n+1} = \frac{1}{2}(s_n + s_{n-1})$ prove that the sequences s_1 , s_3 , s_5 ,; s_2 , s_4 , s_6 , are the one increasing and the other decreasing and show that their common limit is $\frac{1}{3}(s_1 + 2s_2)$. 3

(b) If $x_n > 0 \neq n$ and $\lim_{n \to \infty} x_n = l$, then show that :

$$\lim_{n \to \infty} \sqrt[n]{x_1 x_2 x_3 \dots x_n} = l.$$
 3

- (a) State and prove Cauchy's general principle of convergence.
 3
 - (b) Using the concept of subsequences, show that {(-1)ⁿ} is not convergent.
 3
- 4. (a) Using the concept of sequential continuity, show that the function f defined by :

 $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

is continuous only at x = 0.

(b) Let $f: (0, \infty) \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x}$. Prove that f is uniformly continuous on $[a, \infty)$, a > 0.

3

WALL CONTRACTOR

0341/FQZ-16691

UNIT-II

5. (a) Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for 0 .

(b) Discuss the convergence or divergence of $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+1}} x^n$.

6. (a) Discuss the convergence or divergence of the series $1 + \frac{\alpha\beta}{1,\gamma} x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1.2\gamma(\gamma+1)} x^2 + \dots, \infty, x > 0.$ 3

(b) Show that the following series :

$$\frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \frac{1}{\log 5} + \dots$$

is conditionally convergent.

7. (a) Examine the convergence or divergence of :

$$\sum_{n=1}^{\infty} e^{\sqrt{n}} r^n , r > 0.$$

(b) Discuss the convergence or divergence of the series

$$x^{2} + \frac{2^{2}}{3.4}x^{4} + \frac{2^{2}.4^{2}}{3.4.5.6}x^{6} + \frac{2^{2}.4^{2}.6^{2}}{3.4.5.6.7.8}x^{8} + \dots$$
 3

0341/FQZ-16691

Turn over

3

3

8. (a) What rearrangement of the series :

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots \text{ will reduce the sum to}$ $\frac{1}{2} \log 2 ? \qquad 3$

(b) Prove that the series $\sum_{n=1}^{\infty} r^{\log n}$, r > 0 is convergent if

 $r < \frac{1}{e}$ and divergent if $r \ge \frac{1}{e}$. 3

0341/FQZ-16691