(ii) Questions :9 Sub. Code: 3 7 1 0 Exam. Code: 0 4 7 3 M.Sc. Physics 2nd Semester 1059 QUANTUM MECHANICS—II Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:—Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =	(i) Printed Pages: 2	Roll No35635
M.Sc. Physics 2nd Semester 1059 QUANTUM MECHANICS—II Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:—Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = {	(ii) Questions :9	Sub. Code: 3 7 1 0
QUANTUM MECHANICS—II Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:— Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =		
QUANTUM MECHANICS—II Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:— Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =	M.Sc. 1	Physics 2 nd Semester
Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:— Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = ∫ofor r < a continuous formulation of the following for the following for the following for the density and probability density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6		
Paper-PHY-6012 Time Allowed: Three Hours] [Maximum Marks: 60 Note:— Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =	QUANTU	
Note:—Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = o for r < a 0 for r > a 0 for r > a O fo		
Note:—Attempt five questions in all taking one question each from Unit-I to Unit-IV and the compulsory question from Unit-V. UNIT—I 1. (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = o for r < a 0 for r > a 0 for r > a O fo	Time Allowed: Three Hou	irs] [Maximum Marks : 60
 (a) Define Scattering cross-section. Obtain the expression for scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = {\infty for r < a \ 0 for r > a \		stions in all taking one question each from and the compulsory question from Unit-V.
scattering amplitude in terms of phase shift. (b) What is Green's function in scattering theory? 9,3 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) = $\begin{cases} \infty & \text{for } r < a \\ 0 & \text{for } r > a \end{cases}$ Also find the total scattering cross-section. 6,6 UNIT—II 3. (a) Obtain the expression for current density and probability density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6	· () · D C C · · ·	
 2. (a) What is Born approximation? What are its limitations? (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =		
 (b) Obtain exact expression for phase shift for low energy scattering from hard sphere potential V(r) =	(b) What is Green's f	function in scattering theory? 9,3
from hard sphere potential V(r) = $\begin{cases} \infty & \text{for } r < a \\ 0 & \text{for } r > a \end{cases}$ Also find the total scattering cross-section. 6,6 UNIT—II 3. (a) Obtain the expression for current density and probability density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6	2. (a) What is Born app	roximation? What are its limitations?
Also find the total scattering cross-section. UNIT—II 3. (a) Obtain the expression for current density and probability density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6	(b) Obtain exact expre	ssion for phase shift for low energy scattering
UNIT—II 3. (a) Obtain the expression for current density and probability density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6	from hard sphere	potential $V(r) = \begin{cases} \infty & \text{for } r < a \\ 0 & \text{for } r > a \end{cases}$
density for K.G. equation. (b) Describe the behaviour of Dirac particle in an electromagnetic field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6	Also find the tota	
field. 6,6 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6		
 4. (a) Explain Zitterbewegung. (b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6 		
(b) Derive an expression for spin-orbit interaction energy for Dirac particle. 6,6		As earlied in the Control of the Con
Dirac particle. 6,6		
	3710/FQZ-16646	1 [Turn over

UNIT-III

- 5. (a) Describe the features of second quantization using Schrodinger field as an example.
 - (b) Write down the free scalar field theory Lagrangian and obtain equations of motion. 6,6
- 6. (a) Write down the free classical electromagnetic field Lagrangian and obtain the equations of motion.
 - (b) Write down the free classical Dirac field Lagrangian and obtain the equations of motion. 6,6

UNIT-IV

- 7. (a) Establish the quantization rules for complex scalar field.
 - (b) What are Feynman diagrams? Draw the Feynman diagram(s) for scattering of photon by an electron and write corresponding amplitudes.

 6,6
- 8. (a) For real scalar field, express momentum operator in terms of number operator.
 - (b) Discuss the Gupta-Bleular formalism for quantizing electromagnetic field. 6,6

UNIT-V

- 9. Attempt all parts:—
 - (a) Explain optical theorem.
 - (b) State properties of Dirac Gamma matrix.
 - (c) Define helicity operator, show that its eigenvalues are ± 1 .
 - (d) What is Lamb shift?
 - '(e) What are Feynman rules?
 - (f) What is normal ordered product and time ordered product of operators? 6×2