B.A./B.Sc. (General) 1st Semester Examination

1127

CHEMISTRY

(Same for B.Sc. Microbial & Food Tech.)
Paper: III Physical Chemistry-A

Time: 3 Hours] [Max. Marks: 22

Note: You have to attempt *five* questions in all, selecting at least *one* question from each Section A, B, C, D and Section E is compulsory. Use of log tables and Si.

Section-A

1. (a) Prove that:

$$\log\frac{a^2}{bc} + \log\frac{b^2}{ca} + \log\frac{c^2}{ab} = 0$$

- (b) Show that the line joining (-3, -3) and (-5, 1) is parallel to the line joining (2, -1) and (0, 3).
- (c) Differentiate $(1 x^2 + x^3)(3x + 6)$ w.r. to x. 1

NA-329 (1) Turn Over

2.	(a)	How can you improve accuracy of an analysis?	1
	(b)	Explain least square method for curve fitting	
		with example.	1
	(c)	Calculate mean and standard deviation for the	
		following data:	
		mg/l of oxalic acid used 31, 27, 26, 35, 23, 31, 33	2
		Section-B	
3.	(a)	Derive various gas laws from Kinetic gas	
		equation.	1
	(b)	Calculate the root mean square velocity of	
		CO ₂ at S.T.P. using S.I. Units.	2
	(c)	Derive Vander Waal's equation of Star for	
		Real gases. What is the significance of this	
		equation ?	1
4.	(a)	Prove that at Boyle's temperature, Vander Waals	
		equation is reduced to ideal gas equation.	1
	(b)	What do you know about critical temperature,	
		volume and pressure? Derive the relationship	
		between P _C , V _C and T _C & Vander Waals	
	41	constants 'a' and 'b'.	1
	(c)	The Vander Waal's constants for CH ₄ are:	
		$a = 2.25 \text{ atm } 1^2 \text{ mol}^{-2} b = 0.043 \text{ litre mol}^{-1}$	
		Calculate its critical constants.	2
N	A-3	329 (2)	

Section-C

5.	(a)	Define and explain rate law and instantane rate of reaction.	ous 1
	(h)		-+0)
	(b)	Differentiate molecularity and order or reaction.	(o) ·1
	(c)	Aqueous solution of Ammonium nit decomposes to evolve N_2 . The volumes of	N ₂
		evolved at different times were measured give the result :	to
	ba	Time (min) Vol. of N ₂ (CC) (d)
		20 100 100 100 100 100 100 100 100 100 1	
		70 33	
		α 162	
		Show that it is a 1st order reaction and calcu	late
		rate constt.	2
6.	(a)	Explain the fact that radioactive decay is a	Ist
		order phenomenon.	(it) 1
	(b)	Define the following:	
		(i) Mean Life of a reaction	Verth
		(ii) Pseudoorder reaction	(v)) 1
	(c)	Describe in detail the factors influencing	the
		rate of reaction.	(iv) 2
N	A-3	329 (3) T	urn Over

Section-D

7.	(a)	Explain Transition state theory of reaction rates for bimolecular reactions.	
	a >	to the state of the same of the same	1
	(b)	Derive and explain the significance of Arrhenius equation.	1
	(c)	The value of rate constant of a first order reaction gets tripled when the temperature is changed from 293 K to 313 K. Calculate the activation energy of the reaction.	2
8.	(a)	How substrate affects the order of enzyme catalysed reaction? Name the equation if any.	1
	(b)	Discuss kinetics of general acid base catalysed reaction with suitable example.	2
	(c)	With the help of energy level diagram, explain the effect of catalyst on the rate of a chemical	er de
		reaction.	1
		Section-E	
		Compulsory Question	
9.	(i)	What are Catalytic promoters and inhibitors ?	
	(ii)	What are units of rate constant for 2nd and 3rd order reaction?	
	(iii)	Give the units of Vander Waal's constants 'a' and 'b'.	
1	(iv)	Define Collision number.	
	(v)	What is Joule Thomson Effect ?	
	(vi)	Define mean, median and mode. 6x	1=6
N	A-3	(4)	