(i) Printed Pages: 4]

Roll No.

(ii) Questions :

Sub. Code : 0 2 4 7

Exam. Code : 0 0 0 3

B.A./B.Sc. (General) 3rd Semester Examination

1127

PHYSICS

(Statistical Physics and Thermodynamics-I)
Paper: A

Time: 3 Hours]

[Max. Marks: 44

- Note: (i) Attempt five questions in all, selecting two questions each from Unit I and Unit II. Unit III is compulsory.
 - (ii) Use of logarithmic tables and non-programmable calculator is allowed.

Unit-I

1. (a) What is thermodynamic probability for distributing 'n' distinguishable particles in two compartments? Find the probability of a macrostate, most probable macrostate and least probable macrostate.

6

NA-56

(1)

Turn Over

T	(b)	A bag contains 6 white and 8 red balls. Three	
		balls are taken out of the bag one by one in a	
		random fashion. Calculate the probability of all	
	Ted	the three balls to be red.	3
2.	(a)	Discuss the variation of probability of a	
		macrostate on account of deviation from the	
		state of maximum probability for a system of	
		'n' particles in two compartments of equal	
		probability.	7
	(b)	If a pair of six faced dice with faces marked 1	
		to 6 is thrown, what is the probability that sum	
TEL		of numbers which show up is 8.	2
3.	(a)	Prove that for a dynamic system, the fraction of	
		total time spent in any particular macrostate is	
		proportional to the thermodynamic probability	
. (n two	of that state.	6
	(b)	Calculate the percentage error in using Sterling's	
		formula in $lnn! = nln - n$, where $n = 4$.	3
N	A-5	66 ((2) 03-AM	

who valuII-II cupation index

4.	(a)	Explain the term position, space, momentum space and phase space.	2
	(b)	For any classical system occupying volume 'v'	
	Pus [derive an expression for the number of phase space cells in the momentum interval 'p' to ' $p + dp$ ' and energy interval 'u' to ' $u + du$ '.	6
5.	(a)	What are the assumptions of Bose-Einstein Statistics? Derive the Bose-Einstein distribution	
	liable	(f) What is the meaning of the principle.wal	6
	(b)	Show that Wein's displacement law can be	
	ne e	obtained from Planck's law.	3
6.	(a)	What is the difference between Maxwell Boltzmann, Bose-Einstein and Fermi Dirac	
	Canit	Statistics ? Give at least six differences.	6
	(b)	At what temperature will the average speed of molecule of hydrogen gas be double the average speed of oxygen gas molecule at 300 K?	2
		Unit-III	3
X	8 14 11		
7.	Mark	mpt any <i>eight</i> questions. Each question carries 1	
	(a)	What is the probability of drawing a king from a deck of 52 cards?	

(3)

Turn Over

NA-56

- (b) What is the value of occupation index of fermions at 0° K for $U > U_f$ and $U < U_f$, where U_f denotes the fermi energy?
- (c) What is the difference between microstate and macrostate?
- (d) Explain the term constraints on a system.
- (e) What is the difference between fermions and Bosons?
- (f) What is the meaning of the principle of equal a priori probability?
- (g) How does free electron gas differ from an ordinary gas ?
- (h) Under what conditions do Bose-Einstein and Fermi Dirac Statistics lead to classical statistics?
- (i) What is the minimum size of phase space cell in classical and quantum statistics?
- (j) What is the range of probability of an event? $8\times1=8$

NA-56