(i) Printed Pages : 4]

Roll No.

(ii) Questions :9] Sub. Code : 0 2 5 2

Exam. Code : 0 0 0 3

B.A./B.Sc. (General) 3rd Semester Examination

1127

CHEMISTRY

(Physical Chemistry-A)

Paper : XI

(Same for B.Sc. Microbial & Foot Technology)

Time : 3 Hours]

[Max. Marks: 22

- *Note* :- (i) Attempt *five* questions in all, selecting at least *one* question from each section. Section A to D carry equal marks. Section E is compulsory.
 - (ii) Use of log tables and simple calculator is allowed.

Section-A

- (a) Briefly explain, how the structure of liquids can be studied. Briefly explain 'Hole Theory' and 'Free Volume Theory' of liquid state.
 - (b) State and explain Le-chatelier's principle. With the help of this principle, explain the following :

NA-59

Turn Over

2

- (i) Effect of temperature on the dissolution of O_2 in water. (Exothermic phenomenon)
- (ii) Effect of pressure on the boiling point of a liquid.

2

2

2

3

1

2

2

- (a) What are 'Liquid Crystals' ? Why are they so called ? Briefly explain different types of liquid crystals.
 - (b) What do you understand by 'Liquid Crystal Display' ? Briefly explain the application of liquid crystals in electronic industry. What type of liquid crystals are used in it.

Section-B

- 3. (a) Derive 'Van't Hoff Equation' in terms of K_p as well as K_c .
 - (b) Why ΔG° obtained from K_p and K_c has different values ? When these values will be same ?
- 4. (a) Starting from basic principle derive the relationship

$$\Delta G^{\circ} = - RT \ln K_{n}$$
.

(b) Boiling point of water is 373K. Calculate the vapour pressure of water at 353K. The enthalpy of vapourisation of water is 9.8 K cals mol⁻¹.

NA - 59

Section-C

- 5. (a) Derive an expression for the entropy change of an ideal gas when the temperature changes from T_1 to T_2 and volume changes from V_1 to V_2 .
 - (b) Calculate the maximum efficiency of a steam engine operating between 100°C and 20°C. What would be the efficiency of the engine of the boiler temperature is increased by 30°C, the temperature of the sink remaining the some ?
- 6. (a) Show that for a thermodynamically irreversible process.
 - $\Delta S_{system} + \Delta S_{surroundings} > 0$ (b) Derive an expression for the entropy change when n_1 moles of an ideal gas (A) are mixed with n_2 moles of another ideal gas (B). Comment upon the sign of ΔS_{mixing} .

Section-D

- 7. (a) Explain the term 'Helmboltz Function' ? How can you deduce that for a process occurring at constant temperature, the decrease in Helmholtz function $(-\Delta A)$ is equal to maximum work done by the system ?
 - (b) What is 'Nernst Heat Theorem' ? What results follow from it regarding entropy change and heat capacity change of a system ? How does it lead to the definition of 'Third Law of Thermodynamics'.

NA-59

2

2

2

2

2

2

8. (a) Derive 'Gibbs' Helmholtz Equation' in the form

$$\frac{\partial (\Delta G / T)}{\partial T} = \frac{-\Delta H}{T^2}.$$

(b) The pressure of two moles of an idal gas at 298K falls from 10 bar to 0.4 bar. Calculate the change in free energy.

 $[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}] = 2$

2

6

Section-E

- 9. (a) Define 'Carnot Heat Theorem'.
 - (b) What is the difference between Helmholtz Function and Gibbs' Function ?
 - (c) Which out of the following has higher value of entropy ?
 - (i) CO₂ at 15°C and 1 atmosphere
 - (ii) Dry ice at 1 atmosphere.
 - (d) Under what conditions 'Thermodynamic Equilibrium Constant' in terms of activities (K_a) becomes equal to K_p and K_c ?
 - (e) How is the 'Free Energy Change' of a reaction in a given state related to its reaction quotient (QP) in that state and the equilibrium constant (K_p) ?
 - (f) What do you understand by Thermography ? Explain briefly.

NA-59

(4)