(i) Printed Pages: 4] Roll No.

(ii) Questions : 9] Sub. Code : 0 9 6 2

Exam. Code : 0 0 3 3

B.Sc. (Hons.) 1st Semester Examination

1127

BIOTECHNOLOGY (Chemistry)

Paper: BIOT-Sem-I-IV-T

Time: 3 Hours] [Max. Marks: 67

Note: Attempt five questions in all, choosing any two questions from Section A and B each. Section C is compulsory. All questions carry equal marks in Section A and B.

Section-A

- 1. (a) Define H-bonding. Discuss different types of H-bonding and conditions for forming H-bonds.
 - (b) Using VSEPR theory show that ICI₂ is linear while CIF₃ is T-shaped.
 - (c) Which of the following pairs is expected to have a larger size and why?
 - (i) O, O^{-2}
 - (ii) Li⁺, Be²⁺ 5,6,4

NA-293

(1)

Turn Over

- 2. (a) Differentiate between the following with examples:
 - (i) Absorption and emission spectroscopy.
 - (ii) NMR and mass spectra.
 - (b) Explain the principle of IR spectroscopy. How will you differentiate between CH₃OCH₃ and CH₃CH₂OH on the basis of their absorption signals?

8,7

- 3. (a) The vapour pressure of 2% of an aqueous solution of a non-electrolyte at 100°C is 755 mm. Calculate the molar mass of the solute.
 - (b) What are ideal and non-ideal solutions? Explain with examples as to why some solutions show positive and negative deviations?

7.8

8,7

- 4. (a) The rate constant of a particular reaction increases 4 times when the temperature changes from 293 K to 313 K. Calculate the energy of activation of such a reaction.
 - (b) What are the advantages of transition state theory over collision theory?

Section-B

5. (a) Explain in detail why the quantum efficiency for the photosynthesis of HBr is very low, i.e., 0.01.

NA-293

- (b) Draw a well labelled Jablonski diagram showing all the internal conversions and intersystem crossing. Explain how they arise?

 8,7
- 6. (a) Define the following terms with examples:
 - (i) Denticity
 - (ii) Coordination number
 - (iii) Ligand
 - (b) What are Chelates? Discuss the factors affecting their stability.
 - (c) A coordination compound CrCl₃.6H₂O gives precipitates of AgCl with AgNO₃ solution. The molar conductance of the resultant solution corresponds to total of three ions. Write the structure and IUPAC name of the compound. 6,5,4
- 7. (a) Discuss the mechanism of S_N^2 reaction and draw the energy profile diagram.
 - (b) Explain the different types and structure of carbenes.
 - (c) What are rearrangement reactions? Give one example each for [1,2]-hydride and [1,2]-methyl shift reactions. 6,4,5

NA-293

- 8. (a) Explain the order of acidity of the following carboxylic acids:

 CICH COOH BrCH COOH CH COOH
 - ClCH₂COOH, BrCH₂COOH, CH₃COOH
 - (b) Give the mechanistic details for Hell-Volhard-Zelinsky reaction. 6,9

Section-C

- 9. (a) Why do some reactions take place higher temperature and not at room temperature?
 - (b) State and explain Raoult's law.
 - (c) How does the addition of a catalyst affect the rate of the equilibrium constant ?
 - (d) Define Lambert-Beer law.
 - (e) Arrange the following in order of decreasing stability:

+CH(CH₃)₂, +CH₂CH₃, +CH₃, +C(CH₃)₃

- (f) Explain the importance of stability of the corboxylate anion on the acidic strength of carboxylic acids.
- (g) Give the IUPAC name for $[Cu(NH_3)_4][Cr(Cl)_4]$. 1×7=7