1127

Bachelor of Computer Applications Third Semester BCA-301: Computer Based Numerical and Statistical Methods (Old Syllabus 2016-17)

Time allowed: 3 Hours

Max. Marks: 90

NOTE: Attempt five questions in all, including Question No. 9 (Section-E) which is compulsory and selecting one question each from Section A-D. Non-programmable and non-storage type calculator is allowed. Log table may be allowed.

x-*x*-*x*

Section A

- Q 1. a) How a floating point number is stored in the memory of a computer?
 - b) Subtract the following two floating point numbers 0.36143447×10^7 and 0.36132346×10^7 and give the result in normalized floating point number.
 - c) Given that α is the only root of equation: $x^3 x^2 6 = 0$: i) Show that $2.2 < \alpha < 2.3$ (6, 6, 6)
- Q 2. a) What do you mean by roots of an equation? Explain Newton-Raphson method of evaluating roots of a non-linear equation.
 - b) Define error. Write and explain different errors arising due to numerical computations with suitable example.

Section B

Q 3. a) Solve the below given equations using Gauss Elimination method:

regression disertion

x + y + z = 63x + 3y + 4z = 20 2x + y + 3z = 13

b) Discuss the Gauss Seidel method for the solution of simultaneous equations. What is Pivoting- Explain its use in Gauss Seidel Method?

(9, 9)

(9, 9)

Q 4. a) Using Gauss – Jordan method, find inverse of the following:

4	6	2	
13	7	2 10 5_	
_8	9	5	

b) Find approximate value of following integral:

$$=\int_{1}^{2} \frac{dx}{x}$$

ii)

Using i

i) Trapezoidal Rule

Simpson 's Rule.

(9,9)

Section C

-2-

Q 5.	<i>a</i>)	Construct a	frequency	distribution	of following	data,	using	5 classes:	
------	------------	-------------	-----------	--------------	--------------	-------	-------	------------	--

10	15	12	24	30	17	20	12	11	13
22	22	23	26	12	12	29	10	11	10

b) Find the mean, median and mode of a data set: 23, 63, 52, 29, 29, 55, 41, 36 and 34.

c) What is difference between mean and standard deviation?

(6, 6, 6)

(9, 9)

- Q 6. a) Write a program in C to compute mean, median and mode of a data set.
 - b) Explain the following in statistics with suitable example:
 - *i*) Harmonic Mean *ii*) Geometric Mean

Section D

Q 7. Fit a line $y = m \cdot x + b$ (by the method of least squares) to the following data:

x	8	2	11	6	5	4	12	9	6	1
y	3	10	3	6	8	12	1	4	9	14

Q 8. Write a program in C to implement linear regression algorithm.

X-X-X

(18, 18) her the belont given equations using Gauss 11 and 18, 18).

Section E

- Q 9. Define\ Explain the following terms:
 - a) Kurtosis
 - b) Relative Error
 - c) Role of Runga-Kutta Methods
 - d) Disadvantages of Bisection method
 - e) Cumulative Frequency
 - f) ill Conditioned
 - g) Skewness
 - h) Mantissa and Exponent
 - i) Usage of Birge Vieta method

 $(9 \times 2 = 18)$