(i) Printed Pages: 4]

Roll No.

(ii) Questions : 9] Sub. Code : 3 7 0 5

Exam. Code : 0 4

M.Sc. 1st Semester Examination

1127

PHYSICS (Classical Electrodynamics-I) Paper: PHY-6004

Time: 3 Hours]

[Max. Marks: 60

Note: - Attempt five questions in all, taking one question from each Unit I-IV and the compulsory question from Unit-V.

Unit-I

(a) Electric field at any point \overrightarrow{x} , due to a charge q at origin is $\overrightarrow{E}(\overrightarrow{x}) = q \frac{\overrightarrow{x}}{3}$, where $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$. Show by direct calculation that $\overrightarrow{\nabla} \cdot \overrightarrow{E} = 4\pi\rho$.

NA-223

(1)

Turn Over

6

	(b)	Show that the magnitude of magnetic field	
		produced by a current I flowing in a long	
		straight wire at a point at a distance r is $\frac{2I}{cr}$.	6
2.	(a)	Starting from Biot-Savart law, obtain curl	
		equation for $\mathbf{B} \cdot [\overrightarrow{\nabla} \times \overrightarrow{\mathbf{B}} = \frac{4\pi}{c} \overrightarrow{\mathbf{J}}]$.	6
	(b)	State and explain:	
		(i) Coulomb's Law and	
		(ii) Gauss Law	3,3
	,	Unit-II	
3.	(a)	Obtain Clausius-Mossotti relation.	6
	(b)	A point charge $+q$ is lying at a distance d in front of an infinite conducting plane which is	
		grounded. Using Method of Images find out the	
		electric field at any point.	6
4.	(a)	Show that solution of Laplace's equation is unique.	6
	(b)	Obtain the expression for energy of a charge	
		distribution in dielectric medium.	6
N	A-2	23 (2)	

Unit-III

5.	(a)	State four Maxwell equations and explain their			
		physical significance.	6		
	(b)	Explain the phenomenon of reflection of			
		electromagnetic waves by ionosphere.	6		
6.	(a)	Starting from four Maxwell equations, obtain			
		wave equation for B field.	6		
	(b)	State and prove Pyonting theorem.	6		
		Unit-IV			
7.	(a)	What are Electromagnetic waveguides ? What			
		are characterstics of EM waves that are			
		propagating in wave guides ?	6		
	(b)	Write a note on center fed linear antenna.	6		
8.	(a)	Explain the features of reflection and refraction			
		of plane EM waves at a plane interface.	6		
	(b)	Qualitatively describe the field produced by a			
		harmonically oscillating source at a great			
		distance.	6		
N	NA_223 (2)				

Unit-V

- 9. (a) State Faraday law of induction.
 - (b) Show that trace of quadrapole tensor is zero.
 - (c) What are Dirichlet, Neumann conditions?
 - (d) What is Green's function? How and where it is used in electrodynamics?
 - (e) What are gauge transformations? Explain.
 - (f) What is Skin depth?