(i) Printed Pages: 4]

Roll No.

(ii) Questions : 9]

Sub. Code : 3 7 1

Exam. Code : |0|4|7|

M.Sc. 3rd Semester Examination

1127

PHYSICS (Classical Electrodynamics-II) Paper: PHY-7001

Time: 3 Hours

[Max. Marks: 60

Note: Attempt five questions in all, taking one question from each Units I-IV and the compulsory question from Unit-V.

Unit-I

- Write a note on Lorentz transformations. (a)
 - (b) In a reaction, the initial particles of masses m_1 , m_2 transformed to 3 particles m_3 , m_4 m_5 . $\Delta M = (m_3 + m_4 + m_5) - (m_1 + m_2)$ is positive. Calculate the threshold kinetic energy needed for the reaction to go through, in terms of 6,6 masses of the particles involved.

NA-224

(1)

Turn Over

		part of Newton's equation.	6,6
Unit-II			
3.	(a)	Show the trajectory of a charged particle ($v \ll c$)	
		in uniform constant electric field is parabolic.	
	(b)	Explain the working of magnetic mirror.	6,6
4.	(a)	Consider the case of a charged particle motion,	
		when magnetic field is constant in time but	
		slowly varying in position. Discuss the motion	
		of the particle.	
	(b)	Discuss the relativistic motion of a charged	
		particle in the field of a plane electromagnetic	
		wave.	6,6
Unit–III			
5.	(a)	Write a note on electromagnetic field tensor.	
		What are its components ? How does it	
	5.	transform under Lorentz transformations?	4,4
	(b)	Express continuity equation in covariant form.	4
NA-224 (2)			

An unstable particle of mass M decays into two particles with mass m_1 , m_2 . (M > m_1 + m_2). Using energy momentum invariant principle, obtain the expression for kinetic energy of m_1 ,

Obtain the relativistic equation of motion, counter

in terms of M, m_1 , m_2 .

2. (a)

(b)

- 6. (a) Discuss covariant form of Maxwell equations.
 - (b) Obtain the equation of motion of a charged particle in an electromagnetic field, proceeding from the principle of least action. 6,6

Unit-IV

- 7. (a) Obtain Larmor's power formula.
 - (b) Discuss scattering of a plane wave of monochromatic electromagnetic radiation from a free electron.6.6
- 8. (a) Obtain the expression for retarded scalar potential $\phi(\vec{x}t)$.
 - (b) Discuss scattering of a plane wave of monochromatic electromagnetic radiation from a bound electron.6,6

Unit-V

(Compulsory Question)

- 9. (i) State postulates of Special Theory of Relativity (S.T.R.).
 - (ii) What is time-dilation, length contraction in S.T.R. ?
 - (iii) How are vector potential and scalar potential related to electric field and magnetic field?

NA-224

- (iv) What are retarded potentials?
- (v) State Pyonting theorem.
- (vi) What is gauge choice in context of Maxwell's equations? 2 each

Live to the second same information and the last