1127

M.Sc. (Bio-Informatics)-3rd Semester MBIN-8002: Mathematics

Time allowed: 3 Hours

Max. Marks: 60

NOTE:

I.

Attempt <u>five</u> questions in all including Q. No.-I which is compulsory and selecting atleast <u>one</u> question from each Unit.

- Attempt the following: -
 - (a) Examine whether: $\sqrt{2} + 21$, $\pi 2$ are irrational numbers or not. Justify.
 - (b) Express: $5 + \sqrt{2i}$ in the
 - $\frac{5+\sqrt{2i}}{1-\sqrt{2i}}$ in the form a+ib
 - (c) Define modulus function and draw its graph.
 - (d) Evaluate:

$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$

- (e) Show that $f(x)=x^2$ in differentiable at x=1 and find f'(1).
- (f) Evaluate: $\int 3^{x+2} dx$
- (g) Evaluate the determinant: $\begin{vmatrix} 2 & 3 & -2 \\ 1 & 2 & 3 \\ -2 & 1 & -3 \end{vmatrix}$ by expanding it along first

column.

(h) In a Boolean algebra, prove that: x+(x.y)=x

UNIT-I

II.

(a) Express the number: $-\sqrt{3+i}$ in the modulus-amplitude form.

- (b) Let U={1,2,3,4,5,6,}, A={2,3} and B={3,4,5}. Find $A', B', A' \cap B', A \cup B$ and hence show that $(A \cup B)' = A' \cap B'$.
- (c) Find the value of: $3\sin\frac{\pi}{6}\sec\frac{\pi}{3} 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4}$ (4+4+4)
- III.
- (a) If the sum of a certain number of terms of the A.P.: 25, 22, 19, in 116, then find the last term.
- (b) The 4th term of a G.P. in square of its second term, and the first term is -3. Determine its 7th term.

(c) Expand and simplify:
$$\left(x + \frac{1}{x}\right)^{\circ}, x \neq 0$$
 (4+4+4)

P.T.O.

 $(8 \times 1\frac{1}{2})$

UNIT-II

V. (a) If
$$y = x^{x}e^{2(x+3)}$$
, then find $\frac{dy}{dx}$

(b) Find the maximum profit that a company can make, if the profit function in given by $P(x) = 41 + 24x - 18x^2$. (6+6)

- V. (a) Evaluate: $\int (\log x)^2 dx$
 - (b) A population grows at the rate of 8% per year. How long does it take for the population to double? Use differential equation for it. (6+6)

UNIT-III de la moi arte de

VI. (a)

·I

- If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, find a and b.
- (b) Using determinant, find the area of the triangle whose vertices are (-2,4), (2,-6) and (5,4). Are the given points collinear? (6+6)
- VII. (a) Check whether the following statement in true or not? If $x, y \in z$ are such that x and y are odd, then xy is odd.
 - (b) Convert: $(7261.664)_8$ to its equivalent binary and hex number. (6+6)

and the value of $3\sin\frac{\pi}{6}\sec\frac{\pi}{7} - 4\sin\frac{5\pi}{6}\cot\frac{5\pi}{4}$