1.10

(i) Printed Pages : 4]

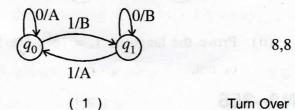
(ii) Questions :9]

Pages : 4]		Roll No				
ons	: 9]	Sub. Code :	3	6	1	9
		Exam. Code :	0	4	6	1

M.Sc. 3rd Semester Examination

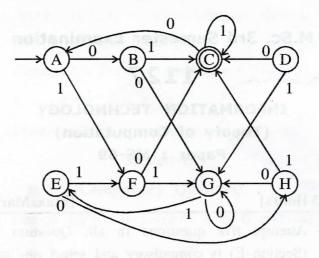
1127

INFORMATION TECHNOLOGY (Theory of Computation) Paper : MS-69


Time : 3 Hours]

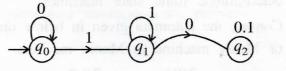
[Max. Marks : 80

Note :- Attempt five questions in all. Question No. 9 (Section-E) is compulsory and select one question each from Sections A to D.


Section-A

- 1. (i) Differentiate between deterministic and nondeterministic finite state machines.
 - (ii) Convert the automata given in below diagram of Mealy machine to Moore machine.

NA-356


- 2. (i) Discuss Chomsky classification of languages with suitable examples.
 - (ii) Minimize the following DFA :

Section-B

3. (i)

(i) Construct the regular expression from given DFA.

(ii) Prove the language $L = \{b^{i2}, i \ge 1\}$ is regular or not.

NA-356 (2)

8,8

8,8

4. (i) Prove the theorem; Let r be a regular expression, then there exists a NFA with ∈ transitions that accepts L(r).

1 pm

NA-3

(ii) Construct NFA for the regular expression given below :

$$r = (01 + 10)^{+}$$
 8,8
Section–C

- 5. (i) The CFG ({S, A, B, C}, {a, b}, P, S), where P is S \rightarrow AB|BC, A \rightarrow BA|a, B \rightarrow CC|b, C \rightarrow AB|a. Using CYK prove $w \in L$, where w = "baaba".
 - (ii) Construct CFG for the language L which has all the strings which are all palindrome over Σ = {a, b}.
 8,8
- 6. (i) Design a PDA for accepting language $\{L = a^n b^n \mid n \ge 1\}$. Simulate this PDA for string *aaabbb*.
 - (ii) Construct the following CFG into Chomsky Normal Form,

	$S \rightarrow aaaaS, S \rightarrow aaaa$	8,8	
56	(3)	Turn Over	

Section-D

- 7. (i) Construct a Turing machine for palindrome of a string of odd length with $\Sigma = \{0, 1\}$.
 - (ii) Prove : If L is recursive language then \overline{L} is also a recursive language. 8,8
- 8. (i) Construct a Turing machine for :

 $\mathcal{L} = \{ a^n b^n \mathcal{C}^n \mid n \ge 1 \}.$

(ii) Discuss LR(K) grammar properties.

Section-E

8.8

(Compulsory Question)

- 9. (i) Design DFA for : $(ab)^n$, $n \ge 0$ and $(ab)^n$, $n \ge 1$.
 - (ii) Prove : If L_1 and L_2 are two regular languages, then $L_1 \cup L_2$ is regular.
 - (iii) Define Chomsky and Greibach Normal forms.
 - (iv) Discuss post correspondence problem. 4×4=16

NA-356

(4)