(i) Printed Pages: 3

Roll No.

(ii) Questions :8 Sub. Code : 0 1 4 6 Exam. Code : 0 0 0 2

> B.A./B.Sc. (General) 2nd Semester 1048

MATHEMATICS

Paper : II Calculus-II

Time Allowed : Three Hours]

[Maximum Marks : 30

Note :— (1) Attempt five questions in all, selecting at least two questions from each section.

(2) Each questions carries 6 marks.

SECTION-I

 (i) Show that the line joining the two points of inflexion of the curve :

 $y^{2}(x - a) = x^{2}(x + a), x \neq \pm a$

subtends an angle $\pi/3$ at the origin.

- (ii) Trace the curve $y^2 = (x + 1)^3$.
- 2. (i) Find the asymptotes of the curve :

 $x^2y + xy^2 + 2x^2 - 2xy - y^2 - 6x - 2y + 2 = 0$ and show that they cut the curve in at most three points which lie on the straight line 2x - 3y - 4 = 0.

1

0146/LSL-39170

Turn over

3.3

(ii) Determine the position and nature of the double points on the curve :

$$x^{3} - y^{2} - 7x^{2} + 4y + 15x - 13 = 0.$$
 3,3

3. (i) Define circle of curvature. Find the equation of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

- (ii) Show that the points of intersection of the curve $xy(x^2 y^2) 25x^2 9y^2 + 144 = 0$ and its asymptotes lie on ellipse whose eccentricity is 4/5. 3,3
- 4. (i) If C_0 , C_p denote the lengths of chord of curvatures of the cardioid $r = a (1 + \cos \theta)$ along and perpendicular to the radius vector through any point respectively. Prove that :

$$3(C_{o}^{2} + C_{p}^{2}) = 8aC_{o}$$
.

(ii) Find the interval in which the curve $y = (x^2 + 4x + 5)e^{-x}$ is concave upwards or downwards. 4,2

SECTION-II

5. (i) If $\int_{0}^{\pi/4} \tan^{n} x dx$, show that, for n > 1, $I_{n} + I_{n-2} = \frac{1}{n-1}$.

Hence deduce the value of I₃.

(ii) Evaluate
$$\int \cosh^{-1}\left(\frac{1+x^2}{1-x^2}\right) dx$$

0146/LSL-39170

6

which his mail we have

- (i) Find the length of the curve x^{2/3} + y^{2/3} = a^{2/3} measured from (0, a) to any point (x, y).
 - (ii) Find the volume of the solid obtained by revolving the area included between the curves $y^2 = x^3$ and $x^2 = y^3$ about X-axis. 6
- 7. (i) Find the surface area of the solid obtained by revolving the curve $y = 2x + 1 + \frac{1}{x^2}$ about x-axis for $1 \le x \le 2$.
 - (ii) Use Simpson's rule with n = 4 to approximate

$$\int_{-1}^{1} (x^3 + 1) dx$$
. Also find the error. 3,3

8. (i) Evaluate :

$$\lim_{n \to \infty} \frac{1}{n^{16}} (1^{15} + 2^{15} + \dots + n^{15}).$$

(ii) Derive the reduction formula for $\int x^n \sin(ax) dx$. Hence

evaluate
$$\int_{0}^{\pi/2} x^{3} \sin(x) dx$$
 2,4

0146/LSL-39170

13000

3