(i)	Printed Pag	es: 4	Roll No					
(ii)	Questions	:9	.Sub. Code:	0	3	5	2	
			Exam Code :	0	0	0	4	- CON 186

B.A./B.Sc. (General) 4th Semester 1048

CHEMISTRY (Same for B.Sc. Microbial & Food Technology)

Paper: XV Physical Chemistry-B

Time Allowed: Three Hours [Maximum Marks: 22

Note:— Attempt five questions in all, one question from each unit and the compulsory question. Compulsory question carries 6 marks and other four questions carry 4 marks each.

UNIT-I

- 1. (a) Discuss the salient features of the phase diagram of leadsilver system and explain desilverization of lead on the basis of this phase diagram.
 - (b) Compare the melting point curve of Ice and solid CO₂. 2,2
- (a) What do you mean by critical solution temperature?
 Explain a system which has both upper CST as well as lower CST.
 - (b) Apply Nernst Law to the association of solute in immiscible liquids. 2,2

UNIT—II

- (a) State Kohlrausch's law. How can it be used to calculate (i) Ionic Product of Water, (ii) Solubility of a sparingly soluble salt.
 - (b) The equivalent conductance of NH₄Cl at a certain dilution is 149.7 ohm⁻¹cm² and the ionic conductance of OH⁻ and Cl⁻ ions are 198 and 76.3 ohm⁻¹cm² respectively. Calculate the equivalent conductance of NH₄OH at this dilution.

2,2

- 4. (a) Briefly describe Hittorf's method for the determination of transport number of Ag⁺ and NO₃ in AgNO₃ solution when (a) electrodes of Platinum are used
 - (b) electrodes of silver are used.
 - (b) The equivalent conductance of 0.01 N solution of acetic acid at 298 K is 5.32 mhos cm² equiv⁻¹. The ionic conductances of H⁺ and CH₃COO⁻ ions are 349.8 and 40.9 mhos cm² equiv⁻¹ respectively. Calculate the dissociation constant of acetic acid at 298 K. 2,2

UNIT—III

5. (a) Describe the construction and working of (i) Hydrogen electrode, (ii) Calomel electrode.

- (b) The standard EMF of the cell Ni | Ni²⁺ || Cu²⁺ | Cu is 0.59 volt. The standard electrode potential (reduction potential) of copper electrode is 0.34 volt. Calculate the standard electrode potential of nickel electrode. 2,2
- 6. (a) What do you understand by Reversible Electrodes? Briefly explain the different types giving at least one example each.
 - (b) Calculate the equilibrium constant at 25°C for the reaction $Zn(s) + Cu^{2+} (1M) \rightleftharpoons Cu(s) + Zn^{2+} (1M)$. E° for the cell is 1.10 V.

UNIT-IV

- 7. (a) Derive expression for the liquid-junction potential. How can it be minimized or eliminated?
 - (b) Discuss the application of hydrogen overvoltage in the dissolution and corrosion of metals. 2,2
- 8. (a) Derive an expression for the EMF of a cell with transference taking the example as:

$$H_{2}$$
 (1 atm) | HCl (a₁) | HCl(a₂) | H₂ (1 atm).

(b) Draw a labelled titration curve for the potentiometric titration of an aqueous solution of HCl with an aqueous solution of NaOH.
2,2

UNIT-V

(Compulsory Question)

- 9. (a) What is the difference between eutectic point and cryohydric point?
 - (b) Why Ostwald's dilution law is not applicable to strong electrolytes?
 - (c) How the transport number of ions changes when the temperature is increased?
 - (d) What is quinhydrone?
 - (e) Give the differences between a galvanic cell and an electrolytic cell.
 - (f) Give the basic difference between (i) concentration polarization and (ii) overvoltage. 1×6