[Total No. of (i) Printed Pages 4 (ii) Questions 8]

Sub Code : 0541 (1048) Exam Code : 0006

Exam : B.A./B.Sc. (General), 6th Semester

Subject : Mathematics

Paper : Paper-I : Analysis-II

- Time : 3 Hours Maximum Marks : 30
- **Note :** Attempt **five** questions in all selecting **two** questions from each **section**. **All** questions carry equal marks.

SECTION- A

-x)+iz=7.11.101 .6

1. (a) $\iint_{A} x \, dx \, dy$, where A is the region bounded by the parabolas circles :

 $y^2 = 4ax$ and $x^2 = 4ay$.

- (b) ∬√a² x² y² dx dy over the region bounded by the semi circle x² + y² = ax lying in the first quadrant.
- 2. (a) Find the volume of the tetrahedron bounded by the planes :

x = 0, y = 0, z = 0 and
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
.

P.T.O.

0541 (1048)

(b) $\iiint \frac{dx \, dy \, dz}{\sqrt{1 - x^2 - y^2 - z^2}}$ over the positive octant of the sphere $x^2 + y^2 + z^2 = 1$

3. (a) If F = yî + (x-2xz)Ĵ-xy k, then evaluate ∫∫∫(∇×F).n dS, where S is the surface of the sphere x² + y² + z² = a² above the XY plane.
(b) If F = (2x² + y²)î + (3y-4x)Ĵ, evaluate

 $\int \vec{F} \cdot dr$ around the triangle

ABC whose vertices are A(0,0), B(2,0) and C(2,1).

- 4. (a) Apply Green's theorem in plane to evaluate $\oint_{C} \left[\left(2x^2 - y^2 \right) dx + \left(x^2 + y^2 \right) dy \right], \text{ where C is the boundary of the surface enclosed by the x axis and the semi circle <math>y = \sqrt{1 - x^2}$.
 - (b) Verify Stokes' Theorem for $\vec{F} = (2x-y)\hat{i} yz^2\hat{J} y^2z\hat{K}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

0541 (1048)

P.T.O.

SECTION-B

- (a) Show that the sequence {f_n(x)} defind by f_n(x) = nxe^{-nx²}, converges point wise but not uniformly in [0,∞]
 - (b) Use M_n Test to show that the sequence

{ $f_n(x)$ }, where $f_n(x) = \frac{nx}{1+n^2x^2}$ does not converge uniformly on [0,1].

- - (b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n^4 x^2}$ is uniformly convergent for all x and it can be differentiated term by term.
- 7. (a) Find the radii of convergence of the following power series :

(i)
$$\sum \left(1+\frac{1}{n}\right)^{n} x^{n}$$

3

0541 (1048)

(ii)
$$\sum_{n=0}^{\infty} \frac{(x-2)^{4n}}{4^n}$$

(b) Show that $\int_0^1 \frac{\tan^{-1} x}{x} dx = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)^2}$

- 8. (a) Expand $f(x) = |\cos x|$ as Fourier series in $-\pi < x < \pi$.
 - (b) Show that for $-\pi \le x \le \pi$,

$$x^{2} = \frac{\pi^{2}}{3} - 4\left(\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} - \dots\right)$$

Hence evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$