- - B.A./B.Sc. (General) 6th Semester 1048

CHEMISTRY

Paper-XXII: Organic Chemistry-B
(Same for B.Sc. Microbial and Food Technology)

Time Allowed: Three Hours] [Maximum Marks: 22

Note: — Attempt FIVE questions in all selecting ONE question from each unit. Question No. 9 is compulsory.

UNIT-I

- (a) What are α-amino acids? Discuss their classification and chemical reactions involving both the functional groups present in the molecule.
 - (b) Write short notes on the following:
 - (i) Isoelectronic point of α -amino acids.
 - (ii) Stereochemistry of α-amino acids. 2,2
- 2. (a) Give the details involved in Merrifield solid phase peptide synthesis.
 - (b) Give details for terminal residue analysis for determining the sequence of amino acids in a polypeptide chain.

2,2

UNIT-II

- 3. (a) What is Ziegler-Natta polymerization? Discuss the mechanism involved in this polymerisation. Illustrate the mechanism by taking an appropriate example.
 - (b) Write a short note on the following vinyl polymers. Discuss their type, preparation and uses:
 - (i) Polyethylene
 - (ii) Polyvinylacetate
 - (iii) Polytetrafluoroethylene (PTFE)
 - (iv) Poly(methylmethacrylate).

2,2

- 4. Give the detailed synthesis for the following:
 - (i) Nylon 66
 - (ii) Urea-Formaldehyde resin.

2,2

UNIT—III

- 5. (a) Using the malonic ester synthesis to give details for the synthesis of the following compounds:
 - (i) 3-Methylbutanoic acid
 - (ii) HOOCCH₂CH₂COOH
 - (b) Give the detailed outline for the preparation of 3-methyl-2-pentanone starting from acetoacetate ester. 2,2
- (a) Explain the phenomenon of tautomerism observed in ethyl acetoacetate. Also give the evidence in support of the keto-form.

(b) Give the mechanism involved in the alkylation of enamines. Using this reaction give the preparation of 2-benzylcyclohexanone i.e. 2,2

UNIT-IV

7. (a) Complete the following reactions:

(i)
$$O + C_2H_5MgBr \longrightarrow ? \xrightarrow{H_3O^+} ?$$

- (ii) $HC \equiv CH + CH_3MgBr \longrightarrow ?$
- (iii) CH,COCl + CH,MgBr → ?

(iv) HCN +
$$C_2H_5MgI \longrightarrow ? \xrightarrow{H_3O^+} ?$$

- (b) Give the mechanistic details for the reaction of C₂H₅MgBr with the following:
 - (i) CO₂
 - (ii) Ethyl acetate.

2,2

- 8. (a) Discuss the mechanistic details for the following reactions:
 - (i) Simmons-Smith reaction.
 - (ii) Benzaldehyde with BrZnCH₂COOC₂H₅

- (b) Complete the following reactions:
 - (i) $C_6H_5CH=CHCOCH_3 + CH_3Li \xrightarrow{Hexane} ?$
 - (ii) $CH_3Li + C_6H_5COOH \longrightarrow ?$
 - (iii) $CH_3COCH_3 + CH_3Li \longrightarrow ?$

(iv)
$$F + C_6H_5Li \xrightarrow{THF}$$
? 2,2

(Compulsory Question)

- 9. (i) Give the mechanistic details for the synthesis of α-amino acids using Gabriel phthalimide synthesis.
 - (ii) What are the biological functions of proteins?
 - (iii) Differentiate between natural and synthetic rubbers.
 - (iv) How do double bonds in the rubber molecule affect their structure and reactivity?
 - (v) The conversion of acetone (pKa = 20) into its enolate anion with NaOH is reversible and the equilibrium lies far towards the reactant's side. Account for this observation.
 - (vi) Grignard reagents can undergo nucleophilic substitution and nucleophilic addition reactions. Give one example of each.