Exam.Code: 0038 Sub. Code: 0988

1058

B.Sc. (Hons.) Biotechnology Sixth Semester

BIOT- Sem-VI-II-T: Bioprocess Engineering and Technology

Time allowed: 3 Hours Max. Marks: 67

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting one question from each Unit.

x-x-x

- I. Write short answers of the following:
 - a) Yield Coefficient
 - b) In-Situ sterilization
 - c) Growth rate
 - d) Antifoam agents
 - e) Effluent
 - f) Depth filters
 - g) Aseptic operation
 - h) Sparger
 - i) Sigmoidal curve
 - j) Media

 $(10x1\frac{1}{2})$

UNIT-I

- II. a) How the sterilization of air is done for fermentation processes?
 - b) How will you design batch sterilization process?

 $(2x6\frac{1}{2})$

- III. a) Which factors affect the sterilization cycle. Discuss.
 - b) Give a comparison of biochemical engineering and bioprocess technology. (2x6½)

UNIT - II

- IV. a) What do you know about the growth kinetics of continuous fermentation?
 - b) Explain the typical growth kinetics of bacteria in a batch process.

 $(2x6\frac{1}{2})$

- V. a) How physical and chemical parameters affect the metabolism and biomass Productivities in a fermenter.
 - b) Define Del factor. How it is calculated? Give its significance.

 $(2x6\frac{1}{2})$

P.T.O.

UNIT - III

- VI. a) What are the types of control and measurement system in afermenter? Explain.
 - b) Describe the structure of impeller and its functions.

 $(2x6\frac{1}{2})$

- VII. a) Why sparger is required in the fermenter? Describe the structure of DO probe and sparger.
 - b) What are the main requisite for designing the fermenter.

 $(2x6\frac{1}{2})$

UNIT - IV

- VIII. a) Which methods are used commercially for cell disruption to recover the product?
 - b) Explain biological treatment methods of industrial waste water.

 $(2x6\frac{1}{2})$

- IX. a) What do you know about centrifugation and industrial centrifuges?
 - b) Write a note on the filtration process and the industrial filters.

 $(2x6\frac{1}{2})$

x-x-x