(i) Printed Pages : 3

Ouestions

(ii)

1.

: 8

 Roll No.

 Sub. Code :
 0
 0
 4
 4

 Exam. Code :
 0
 0
 0
 1

B.A./B.Sc. (General) 1st Semester 1125 MATHEMATICS Paper : III : Trigonometry and Matrices

Time Allowed : Three Hours]

[Maximum Marks: 30

- Note :- (i) Attempt five questions in all, by selecting at least two questions from each unit.
 - (ii) All questions carry equal marks.

UNIT-I

- (a) Solve the equation $x^5 1 = 0$ and show that the sum of nth power of the roots always vanishes unless n be a multiple of 5, n being an integer.
 - (b) Expand $\cos^5\theta \sin^7\theta$ in a series of sines of multiples of θ . 3,3
- 2. (a) If i = A + iB and only principal values are considered, prove that :
 - (i) $\tan \frac{\pi A}{2} = \frac{B}{A}$
 - (ii) $A^2 + B^2 = e^{-\pi B}$

0044/BHJ-32328

[Turn over

(b) If A + iB = C tan (x + iy), prove that

$$\tan 2x = \frac{2C\dot{A}}{C^2 - A^2 - B^2}$$
 and $\tanh 2y = \frac{2CB}{C^2 + A^2 + B^2}$.
3,3

- 3. (a) If $\sin^{-1}(x+iy) = u + iv$, prove that $\sin^2 u$ and $\cosh^2 v$ are roots of the equation $t^2 t(1 + x^2 + y^2) + x^2 = 0$.
 - (b) Sum to n terms the series ;

 $\frac{1}{\sin\theta\sin2\theta} + \frac{1}{\sin2\theta\sin3\theta} + \frac{1}{\sin3\theta\sin4\theta} + \dots$

4. (a) If $0 < 0 \frac{\pi}{4}$, prove that :

$$\log \sec \theta = \frac{1}{2} \tan^2 \theta - \frac{1}{4} \tan^4 \theta + \frac{1}{6} \tan^6 \theta \dots$$

- (b) If $\cos \alpha + 2\cos \beta + 3\cos \gamma = 0 = \sin \alpha + 2\sin \beta + 3\sin \gamma$, prove that :
 - (i) $\cos 3\alpha + 8\cos 3\beta + 27\cos 3\gamma = 18\cos(\alpha + \beta + r)$
 - (ii) $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\gamma = 18\sin(\alpha + \beta + \gamma)$

3,3

UNIT-II

- 5. (a) Show that every Skew-Hermitian matrix A can be expressed uniquely as P-iQ, where P is a real-skew symmetric and Q is a real symmetric matrix.
 - (b) If X₁, X₂,, X_r are linearly dependent column vectors of order mx1 and A is any mxm matrix, then show that AX₁, AX₂,, AX_r are linearly dependent. 3,3

0044/BHJ-32328

6. (a) Find the values of x such that the rank of :

$$\begin{bmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{bmatrix}$$
 is 3.

(b) For the matrix $A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0 \end{bmatrix}$, find two non-singular

matrices P and Q such that PAQ is in the normal form. 3,3

(a) For what value of λ, does the following system of equations have a solution ?

x + y + z = 1, $x + 2y + 4z = \lambda$, $x + 4y + 10z = \lambda^{2}$

- (b) Prove that the eigen vectors corresponding to distinct eigen values of a matrix are linearly independent. 3,3
- 8. (a) Verify Cayley-Hamilton theorem for the following matrix and hence find its inverse (if exists):
 - $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$

(b) Check whether the matrix A = $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 4 & 9 \end{bmatrix}$ is diagonalizable

or not.

3,3

0044/BHJ-32328

15000