(i) Printed Pages: 3

Roll No.

(ii) Questions

 Sub. Code :
 0
 0
 4

 Exam. Code :
 0
 0
 0

B.A./B.Sc. (General) 1st Semester 1125 PHYSICS Paper–A : Mechanics–I

Time Allowed : Three Hours]

[Maximum Marks : 22

- Note: (1) Attempt five questions in all, selecting two questions each from of Unit I and Unit II.
 - (2) Unit III is compulsory.

:7

- (3) Use of non-programmable scientific calculator is allowed.
- (4) Log tables may be asked for, if needed.

UNIT-I

- 1. (a) Prove that polar unit vectors \hat{e}_{γ} , \hat{e}_{θ} and \hat{e}_{ϕ} constitute a system of orthogonal vectors. $2\frac{1}{2}$
 - (b) Path of a particle is defined by equations :

$$r = \left(3t - \frac{t^2}{30}\right)$$
 and $\theta^2 = (1600 - t^2)$

Find velocity at time t = 1/2 min.

11/2

0045/BHJ-32513

Turn over

- 2. (a) Discuss law of homogenity of space and show that it leads to law of conservation of linear momentum. 2¹/₂
 - (b) Two particles of mass 'm' and '3m' are located at (1, 0) and (-3, 0). If particle of mass '3m' is displaced by '1' unit in -ve X direction, find by what distance and in which direction particle of mass 'm' is to be displaced so that centre of mass of system remains at same point. 1¹/₂
- 3. (a) Define solid angle and its SI unit. Find the solid angle subtended by a sphere at the centre. $2\frac{1}{2}$
 - (b) Why do we prefer spherical co-ordinate system? $\frac{1}{2}$
 - (c) Determine the surface area of a sphere of radius 'r' by using spherical polar coordinates.

UNIT-II

- (a) Find the polar equation of orbit of a particle of mass 'm' moving under the action of an inverse square force field about the fixed centre. $2\frac{1}{2}$
- (b) Show that for an elliptical orbit eccentricity ' \in ' is given by

$$\in = \frac{\mathbf{r}_{\max} - \mathbf{r}_{\min}}{\mathbf{r}_{\max} + \mathbf{r}_{\min}} .$$
 1¹/₂

5. (a) Prove that in Lab system the particles of same mass will move at right angle to each other after elastic collision if one of them were at rest before collision. 3

4.

- (b) The planet mars has aphelion distance 2.485×10^8 km and perihelion distance 2.06×10^8 km, w.r. to sun whose own radius is 7×10^6 km. Find its energy. Given : mass of sun = 2×10^{30} kg, mass of mars = 6.5×10^{23} kg, $G = 6.67 \times 10^{-11}$ N²kg⁻².
- 6. (a) What is Rutherford Scattering ? Obtain a relation between angle of scattering and impact parameter. 3
 - (b) In Lab system two particles each of mass 2 kg, are moving

with velocities
$$(3\hat{i} = 4\hat{j})ms^{-1}$$
 and $(5\hat{i} + 6\hat{j})ms^{-1}$ and.

Find total kinetic energy of system in centre of mass system.

UNIT-III

- 7. Attempt any six parts. Each part carries 1 mark.
 - (i) Is area scaler or vector? What about volume?
 - (ii) What do you mean by conservative force ? Give two examples.
 - (iii) The trajectory of a particle, moving in a plane, is a straight line passing through origin. What is transverse component of velocity of particle?
 - (iv) Under what conditions property of flatness of (free) space holds good?
 - (v) "Air friction increases the speed of a satellite". Comment.
 - (vi) What is difference between scattering and reaction when two particles collide ?
 - (vii) Define scattering cross-section. Prove that it has dimensions of area.

0045/BHJ-32513

10000

1