(i) Printed Pages: 4] Roll No.

(ii) Questions :8]

Sub.	Code	:	0	1	4	6
Exam.	Code	:	0	0	0	2

B.A./B.Sc. (General) 2nd Semester Examination

1047

MATHEMATICS Paper : II Calculus-II

	PERSONAL PROPERTY OF A DEPENDENCE OF A DEPENDE				
Time a 2	Lloung1		TR A care	Mamlea	20
Time : 3	nours	1	Iviax.	Marks	 30

Note :- Attempt *five* questions in all selecting at least *two* questions from each Section.

Section-I

- 1. (i) Show that origin is the point of inflexion for the curve $y = x^{1/3}$.
 - (ii) Find the points of inflexion of the curve

 $y = \frac{x^2 + 1}{x^2 - 1}$. Also find the interval where the

function is concave upwards and concave downwards.

(1)

N-26

Turn Over

2,4

2. (i) Find the nature and position of double points of the curve $y (y - 6) = x^2 (x - 2)^3 - 9$. Trace the curve $x^{2/3} + y^{2/3} = a^{2/3}$. (ii) 3,3 Find all asymptotes of the curve $x^3 - x^2y - xy^2$ (i) 3. $+ y^{3} + 2x^{2} - 4y^{2} + 2xy + x + y + 1 = 0.$ Find the equation of the cubic curve which has (ii) the same asymptotes as the curve $x^3 - 6x^2y +$ $11xy^2 - 6y^3 + x + y + 1 = 0$ and which pass 3,3 through the points (0, 0), (2, 0) and (0, 2). Find the radius of curvature at the point (i) 4. $\left(\frac{3a}{2},\frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. If C_x and C_y be chords of curvature parallel to **(ii)** axes of x and y respectively at any point of the curve $y = ae^{x/a}$, then prove that :

$$C_x^{1/2} + C_y^{1/2} = \frac{1}{2aC_x}$$

(2)

3,3

Section-II

5. (i) Evaluate :

I5.

$$\int \frac{1}{\sqrt{\cosh 2x + \sinh 2x}} dx$$

(ii) If $I_n = \int_0^{\pi/2} x \sin^n x \, dx$, n > 1, $n \in \mathbb{N}$, prove

that
$$I_n = \left(\frac{n-1}{n}\right)I_{n-2} + n^{1/2}$$
. Hence evaluate

6. (i) If
$$I_{m, n} = \int \sin^m x \cos^n x \, dx$$
, prove that :

$$I_{m, n} = \frac{\sin^{m+1} x \cos^{n+1} x}{m+1} + \frac{m+n+2}{m+1} I_{m+2,n}$$

revolution about reaxis of the loop of the curve

Hence evaluate I_{-2, 2}. (ii) Use Trapezoidal rule to approximate

 $\int_0^1 \frac{1}{1+x^2} dx$ by taking n = 4. Also find the

error.

3,3

3,3

(3)

Turn Over

7. (i) Evaluate :

$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{5n} \right]$$

(ii) Find the area bounded by the curves $y^2 = 8x$ and $x^2 + y^2 = 9$. 3,3

2

8. (i) Find the length of the arc of parabola $y^2 - 4y$

+ 2x = 0 which lies in the first quadrant.

(ii) Find the volume of the solid formed by the revolution about x-axis of the loop of the curve

(ii) If C, and C, be chords of co

$$y^2 (a + x) = x^2 (3a - x).$$
 3,3

 $\frac{1}{2}$ at by taking n = 4. Also find the