- (i) Printed Pages: 4]
- (ii) Questions :8]

Roll No.	•••••	•••••		•••••
Sub. Code :	0	5	4	2
Exam. Code :	0	0	0	6

B.A./B.Sc. (General) 6th Semester Examination

1047

MATHEMATICS Paper : I (Analysis-II)

Time : 3 Hours]

[Max. Marks: 30

Turn Over

Note :- Attempt *five* questions in all, selecting at least *two* from each Unit. All questions carry equal marks.

potential. Also Int-Int work done in moving

1. (a) Let A = $\{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$ and $f : A \to R$ be defined by :

 $f(x, y) = \begin{cases} y & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

Show that $\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) \, dy \right) dx$ exists and the

other repeated integral is not defined.

(.1)

N-96

- (b) Change the order of integration and hence evaluate $\int_0^a \int_x^{\frac{a^2}{x}} (x+y) dx dy.$
- 2. (a) Find the area of the region bounded between the parabolas $y^2 = 4 ax$ and $x^2 = 4 ay$, where a > 0.
 - (b) Evaluate $\iiint x \ y \ z(x^2 + y^2 + z^2) \ dx \ dy \ dz \ over$ $x^2 + y^2 + z^2 = a^2$ in positive octant.
- 3. (a) Show that $\iiint (x+y+z)^9 dx dy dz$ over the regoin defined by $x \ge 0, y \ge 0, z \ge 0$,

$$x + y + z = 1$$
 is $\frac{1}{24}$.

(b) Show that $\overrightarrow{F} = (2 x y + z^3) \hat{i} + x^2 \hat{j} + 3 x z^2 \hat{k}$ is a conservative force field. Find the scalar potential. Also find the work done in moving an object in this field from (1, -2, 1) to (3, 1, 4).

Time: 3 Hours

- 4. (a) State and prove Gauss's divergence theorem.
 - (b) Verify Stokes' theorem for the vector point

function $\overrightarrow{F} = z \, i + x \, j + y \, k$, where curve is the unit circle in the XY plane bounding the semi-sphere $z = \sqrt{1 - x^2 - y^2}$.

Unit-II

5. (a) Show that sequence $\{f_n(x)\}$ where $f_n(x) = \frac{n}{x+n}$ is uniformly convergent on [0, k], where k is any positive real number but is not uniformly convergent on $[0, \infty]$.

(b) Show that the series $\sum_{n=1}^{\infty} \frac{\cos n x}{n}$ converges uniformly in $(0, 2\pi)$.

6. (a) Test for uniform convergence and term by term integration of the series :

$$\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}, 0 \le x \le 1$$

(b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n^4 x^2}$ is

uniformly convergent fol all x and it can be differentiated term by term.

7. (a) Prove that the series $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ converges for $-1 < x \le 1$.

(3)

Turn Over

N-96

(b) Prove that :

$$\sin^{-1}x = x + \sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6....2n}$$
$$\frac{x^{2n+1}}{2n+1} \forall x \in [-1, 1]$$

Hence deduce that $\frac{\pi}{2} = 1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \dots$

<u>Zi ta a p</u>

8. (a) Find a series of sines and cosines of multiples of x which represents $x + x^2$ in $(-\pi, \pi)$, Hence

show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots$

(b) If
$$f(x) = \begin{cases} \frac{\pi}{3}; & 0 \le x \le \frac{\pi}{3} \\ 0; & \frac{\pi}{3} \le x \le \frac{2\pi}{3} \\ \frac{-\pi}{3}; & \frac{2\pi}{3} \le x \le \pi \end{cases}$$

then show that :

$$f(x) = \frac{2}{\sqrt{3}} \left[\cos x - \frac{\cos 5x}{5} + \frac{\cos 7x}{7} - \dots \right].$$

Hence deduce that $\frac{\pi}{2\sqrt{3}} = 1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \dots$

N-96