(i) Printed Pages : 4] Roll No.

(ii) Questions :8]

Sub. Code :	0	5	4	4
Exam. Code :	0	0	0	6

B.A./B.Sc. (General) 6th Semester Examination

1047

MATHEMATICS (Numerical Analysis) Paper : III

Time: 3 Hours]

[Max. Marks: 30

Note :- (1) Attempt five questions in all, selecting at least two questions from each Section.

> (ii) Use of scientific non-programmable calculator is allowed.

Section-A

Using five iterations of Secand method, find a 1. (a)root of $f(x) = \cos x - xe^x = 0$ upto four decimal places.

N-123

Turn Over

(b) Show that :

Hill Esho

$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$
 3,3

Note why

4.2

 (a) From the table given below, estimate the number of students who obtained marks between 75 and 80.

Marks	No. of Students
3545	18
4555	40
5565	64
65—75	50
7585	28

- (b) Prove that the *n*th divided differences of a polynomial of degree *n* are consecutive. 3,3
- 3. (a) Using four point Gauss Quadrature formula,

evaluate
$$\int_{0.2}^{2.6} e^{-x} dx$$
.

(b) Evaluate :

$$\nabla^n(e^x)$$

N-123

(2)

4. From the following table of values of x and y,

obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.6 using Stirling's formula :

1 x.So. (80)	• y	
1.0	2.7183	
1.2	3.3201	
1.4	4.0552	
1.6	4.9530	4
1.8	6.0496	
2.0	7.3891	
2.2	9.0250	6

Section-B

h in all, sufficting at least

5. (a) Solve the system of linear equations by Gauss-Elimination method :

$$6x_2 + 13x_3 = 61$$

$$6x_1 - 8x_3 = -38$$

$$13x_1 - 8x_2 = 79$$

(b) Compute eigen values and eigen vectors of the

matrix
$$\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$
 using Jacobi's method. 3,3
N-123 (3) Turn Over

6. Solve the system of linear equations by Gauss-Seidel method :

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

6

4,2

6

7. (a) Apply Cholesky Decomposition method to solve the system of equations :

$$x + y + z = 1$$

$$x + 2y + 4z = 2$$

$$x + 4y + 8z = 3$$

(b) Find an approximate value of y when x = 0.1

if $\frac{dy}{dx} = x - y^2$ and y(0) = 1, using Taylor's series method.

8. Apply Runge-Kutta's method of fourth order to find

approximate value of y at x = 0.2 for $\frac{dy}{dx} = x + y^2$, y(0) = 1 taking h = 0.1.

N-123

(4)