(i) Printed Pages : 3
 Roll No.

 (ii) Questions : 9
 Sub. Code : 0 8 7 4

 Exam. Code : 0 0 1 9

B.C.A. 1st Semester 1125 MATHEMATICS IN COMPUTER SCIENCE-I Paper— B.C.A. -103

Time Allowed : Three Hours]

[Maximum Marks: 90

Note :— Attempt five questions in all, including Question No. 9 in Section-E which is compulsory and taking one each from Section-A to Section-D.

SECTION-A

- (a) There are 6 boys and 4 girls and a group of 5 people must be formed. How many groups are possible consisting of 2 girls and 3 boys?
 - (b) Find the constant term in the expansion of $\left(2x + \frac{1}{x}\right)^{2n}$. 9,9
- 2. (a) Three consecutive coefficients in the expansion of $(1+x)^n$ are

 $\binom{n}{r}$, $\binom{n}{r+1}$ and $\binom{n}{r+2}$ respectively & are in the ratio 6:3:1. Show that 2n - 3r = 1 and 3n - 4r = 5.

(b) Find the value of r if the coefficients of x^r and x^{r+1} are equal in the binomial expansion of $(2+3x)^{19}$. 9,9

SECTION-B

- 3. (a) Prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.
 - (b) Prove that $\tan(\alpha \beta) = \frac{\tan \alpha \tan \beta}{1 + \tan \alpha \tan \beta}$. 9,9
- 4. (a) Find the sin, \cos , and $\tan of 240^\circ + e$ in terms of sin e, $\cos e$, and $\tan e$.

(b) Prove that $\frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A - \cos^2 A}.$

SECTION-C

- 5. (a) Expand $\cos^6 \theta \sin^6 \theta$ in terms of the cosines of multiples of θ .
 - (b) Prove that $\frac{\sec 8A 1}{\sec 4A 1} = \frac{\tan 8A}{\tan 2A}$. 9,9
- 6. (a) Angle x is in quadrant 3, approximate $\sin 2x$ if $\cos x = -0.2$. Round your answer to two decimal places.
 - (b) If x and y are angles in quadrant 1 & 3 respectively and cos x = a and sin y = b. Find cos(x + y) in terms of a, b.

9.9

9.9

SECTION-D

7 Evaluate the following:

(a)
$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x^2 + 2x - 8}$$

(b)
$$\lim_{x\to 0} \frac{x+\sin x}{x^2+x}$$

0874/BHJ-32366

2

For what value of 'k' is the following function continuous at (a) x = 1?

$$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}^2 - 1}{\mathbf{x} - 1}, & \mathbf{x} \neq 1 \\ k, & \mathbf{x} = 1 \end{cases}$$

A function is defined by $f(x) = \begin{cases} \frac{x-3}{x-1}, & x \le 0\\ x^2, & x > 0 \end{cases}$ (b)

> Prove that the function is discontinuous at x = 0. 9.9

SECTION-E

(Compulsory Question)

- Define Binomial Theorem for any index. (a)
 - Estimate 0.97³ using Binomial Theorem. (b)
 - Find sec 210° and tan 210°. (c)

The expression $\frac{(\sin x)(\sec x)}{\cot x}$ is equivalent to _____. (d)

- Reduce the power of the following trigonometric expression (e) $4\sin^3 x + 4\cos^3 x$.
- Define continuity in an interval. (f)

6×3=18

8.

9.