1057

Bachelor of Computer Applications (B.C.A.)-2nd Semester BCA-203: Mathematics in Computer Science-II (Old)

Time allowed: 3 Hours

Max. Marks: 90

NOTE:

I.

Attempt five questions in all, including Question No. IX (Unit-V) which is compulsory and selecting one question each from Unit I-IV.

**_*_ UNIT – I

- (a) If $f(x) = \frac{3}{x}$, find f'(x) using the limit definition of the derivative.
 - (b) Find the derivative of f(x) from the first principle, where $f(x) = x \sin(x)$.
 - (c) Find $\frac{dy}{dx}$, if $y = x^{\sin(x)}$, x > 0 (6+6+6)
- II. (a) Find $\frac{dy}{dx}$, if $y + \sin(y) = \cos(x)$.

III. (b) Find the derivative of the function given by
$$f(x) = \sin(x^2)$$

(c) A function $f(x) = 1 - x^2 + x^3$ is defined in the closed interval [-1,1]. Find the value of x, in the open interval (-1,1) for which the mean value theorem is satisfied. (6+6+6)

UNIT – II

IV. Find the following integrals: -

- (a) $\int \frac{1-\sin(x)}{\cos^2(x)} dx$
- (b) $\int \frac{x}{9-4x^2} dx$
- (c) $\int \sin^{-1}(\cos x) dx$

(6+6+6)

(6+6+6)

V. Evaluate the following indefinite integrals: -

(a)
$$\int \frac{e^x(1+x)}{\cos^2(e^x x)} dx$$

(b)
$$\int \sin^3(x) \cos^2(x) dx$$

(c)
$$\int \frac{dx}{1+\tan(x)}$$

UNIT – III

(a) Find $\int x^2 e^{x^3} dx$ (b) Find $\int \log(x) dx$

VI.

(c) Find
$$\int \frac{x \sin^{-1}(x)}{\sqrt{1-x^2}} dx$$

P.T.O.

(2)
VI. (a) Evaluate
$$\int_{-1}^{1} x^3 - x | dx$$

(b) If f(a+b-x)=f(x), then find $\int_{-1}^{1} xf(x) dx$
(c) Find the area of the region bounded by the curve $y=x^3$ and the line $y=4$. (6+6+6)
UNIT-IV
VII. (a) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$, then show that $A^2 - 23A - 40I = O$
Where I is 3×3 identity matrix and
O is 3×3 zero matrix.
(b) Obtain the inverse of the following matrix:
 $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ (9+9)
VIII. (a) Consider a system of linear equations:
 $x - 2y + 3z = -1$
 $x - 3y + 4z = 1$
 $-2x + 4y - 6z = k$
Find the value of k for which the system has infinitely many solutions.
(b) If x, y, z are different and dett $\begin{bmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{bmatrix}$ (9+9)
UNIT-V
IX. (a) Is it rue that $x = e^{\frac{1}{2}e^{\frac{1}{2}x}}$ (9+9)
USIT-O
(9+9)
USIT-O
(9+9)
USIT-O
(9) Differentiate $e^{\frac{1}{2}x} dx = \frac{19}{3}$
(1) If $f(x) = \int_{0}^{1} f sin(t) dt$, then find $f(x)$.
(2) Show that $\int_{0}^{1} 5x^4 \sqrt{x^5 + 1}$ $dx = \frac{4\sqrt{2}}{3}$
(b) If $x = \frac{1}{3} = dett \begin{bmatrix} 6 & 2 \\ 18 & 6 \end{bmatrix}$, then find x . (9-2)