Printed Pages : 12 Roll No. (i)

(ii) **Ouestions**

:9 Sub. Code: 1 9 8 6 Exam. Code: 3 0 9

M.A. 3rd Semester 1125

ECONOMICS (In all Mediums) Paper-MAECO-303&304, Opt(iii) : Basic Econometrics [Maximum Marks: 80 Time Allowed : Three Hours] Note :- Attempt five questions in all including question no. I which is compulsory and selecting one question from each Unit. The use of Simple Non-scientific and Non-programmable calculator is allowed.

- Write short notes (in 25-30 words each) on any ten of the I. following:
 - What do you mean by the term Ordinary Least Square ? (i)
 - What is the use of econometrics for an economist? (ii)
 - Differentiate the terms heteroscedasticity and autocorrelation. (iii)
 - What do you mean by likelihood function? (iv)
 - Write down and briefly explain the likelihood function for a (v) classical linear regression model.

- (vi) Give any one test to detect the problem of Multicollinearity.
- (vii) How the problem of autocorrelation is detected using the autoregressive model?
- (viii) When the DW-test becomes inconclusive?
- (ix) Discuss the major shortcomings of Autoregressive and distributed lag models.
- (x) Which test will be used to detect the autocorrelation if the model is autoregressive ?
- (xi) Define SPSS ? What types of windows are observed in user interface of SPSS ?
- (xii) Which statistics are directly available to detect the problem of Autocorrelation in SPSS ?
- (xiii) How tolerance ratio is different from Variance Inflation Factor (VIF) in SPSS ?
- (xiv) What is the use of the estimates of standardized coefficients provided by SPSS ?
- (xv) What are the major components of an ANOVA Table provided in SPSS ?10×2=20

UNIT-I

II. Discuss in detail the rationale of econometrics ? What are the major dimensions of the subject ? 15

1986/BHJ-32713

III. State and Prove Gauss Markov Theorem for General Linear Regression model :

Y = XB + U;

Where $Y = [y_{ij}]_{n \times 1}$, $X = [x_{ij}]_{n \times k}$, $B = [B_{ij}]_{k \times 1}$ and $U = [U_{ij}]_{n \times 1}$ are different matrices of given orders.

UNIT-II

- IV. Discuss Consequences of Muticollinearity along with its remedial measures.
 15
- V. Discuss the methods to detect the problem of Heteroscedasticity.

15

UNIT-III

- VI. Discuss the Adaptive Expectations and Partial Adjustment approaches of estimating ARDL models. 15
- VII. How Almon's approach is better than other approaches of estimating ARDL approach? Discuss the procedure to estimate ARDL models using Almon's approach. 15

UNIT-IV

VIII. Discuss the role of computer in econometrics modeling. Also discuss the procedure to estimate a multivariate regression model using SPSS.

1986/BHJ-32713

Turn over

3

IX. A consumption function is estimated with two independent variables income and interest rate. The SPSS output is given as follows :

Model Summary (Consumption)

R	R Square	Adjusted R Square	Std. Error of the Estimate
.64	.41	.24	.40

ANOVA (Consumption)

Sum of Squares	ďſ	Mean Square	F	Sig.
.78	2	.39	2.41	.160
1.13	7	.16		1
1.91	9	n orein Sports		0
	1.13	1.13 7	1.13 7 .16	1.13 7 .16

Coefficients (Consumption)

		andardized ficients	Standardized Coefficients	t t	Sig.	95% Confidence Interval for B	
e north and	B	Std. Error	Beta			Lower bound	Upper bound
(Constant)	86	.68	.00	-1.26	.242	-2.46	.75
Income	.65	.32	2.06	2.04	.081	10	1.40
Interest-rate	.16	.10	1.74	1.72	.129	06	.39

Coefficients Correlations (Consumption)

Model	- when we	Income	Interest-rate
	Covariances	Interest-rate	.10

1986/BHJ-32713