(i) Printed Pages: 7]
 Roll No.....

 (ii) Questions : 10]
 Sub. Code : 3817

 Exam. Code : 0502

Master of Commerce 2nd Semester Examination

1047

OPERATIONS RESEARCH (Same for USOL candidates) Paper : M.C. 205

Time : 3 Hours]

[Max. Marks: 80

Note :- Attempt *five* questions in all, selecting at least one question from each Unit. Each question carries 16 marks.

Unit-I

- 1. (a) Explain degeneracy and infeasibility in LPP.
 - (b) Solve the following LP problem by SIMPLEX Method.

(1)

Minimize $z = x_1 - 3x_2 + 2x_3$, Subject to

$$3x_1 - x_2 + 3x_3 \ge 7$$

- $2x_1 + 4x_2 < 12$

$$-4x_1^{1} + 3x_2^{2} + 5x_2 \ge 10$$

$$x_1$$
; x_2 ; and $x_3 \ge 0$

Turn Over

Wanter of the out

body name wants in this

- Describe the origin and development of Operations Research (OR). Discuss the early Indian scene. Also highlight, how you use OR in day-to-day decision making process.
- Geetha Perfume Company produces both perfumes and body spray from two flower extract F1 and F2. The following data has been collected :

Litres of Extract					
EARCH didates)	Perfume Body	Spray Daily	availability (Litres)		
Flower Extract, F1	8	4	20		
Flower Extract, F2	ne 2 mote	pt 31 to	8		
Profit per litre	7	5			

The maximum daily demand of body spray is 20 bottles of 100 ml each. A market survey indicates that the daily demand of body spray cannot exceed that of perfume by more than 2 litres. The company wants to find out the optimal mix of perfume and body spray that maximizes the total daily profit. Formulate the problem as a linear programming model.

Unit–II

4. The cost of transportation per unit from three sources and four destinations are given here. Obtain initial basic feasible solutions using the following methods :

(i) North west corner method.

	17 -		
(ii) Vo	oger s	approximation	metnoa.

Source	inter the	Supply			
(a) Explain		2	3	4	dinom r
1	4	2	7	3	250
2	3	7	5	8	450
3	9	4	3	1	500
Demand	200	400	300	300	1200

5. A firm produces a component and distributes them to 5 wholesalers at a fixed price of Rs. 10/unit. Sales forecast indicate that monthly demand will be 3,000, 3,000, 1,000, 5,000 and 4,000 units at wholesale dealers a, b, c, d and e respectively. The monthly production capacities are 5,000, 1,000 and 10,000 at plants A, B and C respectively. The production costs are Rs. 2, Rs. 1 and Rs. 3 at plants A, B, and C respectively. The unit transportation cost in rupees between the plants and wholesalers are given in the following table :

N-478

Turn Over

		Wholesales					
Plants por en	di mait ii	b	oc abo	d	e		
A leititti nist	0.5	0.5	1.0	1.5	1.5		
B shorthods B	1.0	0.5	1.0	1.0	1.5		
С	1.0	1.0	0.5	1.5	1.0		

Determine the transportation schedule between plants and wholesalers in order to maximize the total profit per month Use VAM to obtain the IBFS.

Unit-III

6. A project schedule has following characteristics :

Project Schedule						
Activity	Name	Time (days)	Activity	Name	Time (days)	
1-2	A	nen4b v	5-6	G	4	
1-3	В	ian/ 1 000,	5-7 00	DOCH S.	800	
2-4	С	spective!	6-8	I	alc <u>r</u> est	
3-4	D	09.1.00	7-8	J	2	
3-5	Е	6	8-10	K	5	
4-9	F	5	9-10	L	7	

(i) Construct PERT

(ii) Compute Te and Tl for each activity.
N-478 (4)

- 7. (a) What are some practical objections to the use of Bayesian statistical methods in any context ?
 - (b) Discuss decision making theory with special reference to uncertainty and risk.

Average time a cyl-tinU waits before being

- 8. (a) Explain principle of dominance
 - (b) Solve the game whose pay off matrix is given below :

(b) The arrival of customers at a banking counter

8	4	2	-1]
9	4 2	4	3
4	-5	3	0
3	-1	5	2
8 9 4 3 7	3	0	
- A	Sector 1		

9. A self-service grocery store employs one cashier at its counter. Eight customers arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes.

Assuming Poisson distribution for arrival and exponential distribution for service rate, find :

N-478

(5)

Turn Over

(a) Average number of customers in the system.

(.6.)

- (b) Average number of customers in queue.
- (c) Average time a customer spends in the system.

(b) [Discuss declaion making theory with special

- (d) Average time a customer waits before being served.
- 10. (a) Explain Kendal lee notation for MMI Model.
 - (b) The arrival of customers at a banking counter follows Poisson distribution with mean of 45 per hour.
 - (i) What is the probability of having zero customer in the system (P_0) ?
 - (ii) What is the probability of having 5customers in the system ? Probability of having 10 customers in the system.

N - 478

(6)

(iii) Determine the steady state performance statistics, namely, L_s , L_q , W_s and W_q ?

(Same for USOL condidates)

Note - Attempt free questions in all selecting at least one

question from each Unit. Each question comes 16

N - 478

marks

(7)