(i) Printed Pages :3

Roll No.

4

(ii) Questions : 9

Sub. Code : 3 2 2 Exam. Code: 4 7 2

M.Sc. 1st Semester 1125

PHYSICS

Paper - Phy-6003 : Quantum Mechanics-I

Time Allowed : Three Hours]

[Maximum Marks: 60

Note :- Attempt FIVE questions in all taking ONE question from each Unit I-IV and the compulsory question from Unit-V.

UNIT-I

1.	(a)	State and prove Schwarz inequality.	0
	(b)	How does a quantum mechanical system evolve ur Hiesenberg representation?	nder 6
2.	(a)	Explain Gram-Schmidt Orthoganlization procedure.	6
	· (b)	Explain the relevance of :	
		(i) Unitary operators	3
		(ii) Hermitian operators in quantum physics.	3
		UNIT-II	
3.	(a)	Obtain the eigen value of L ² operator.	6
	(b)	Obtain the matrix representation for J operator for spi	in 1.

1

6

3224/BHJ-32500

4. (a) For J₁ = 1/2, J₂ = 1/2 find Clebsch-Gordon coefficients. 6
(b) Using basic commutator [x_i, p_j] = iħδ_{ij}, work out the commutators [x, p²_x], [L_x, L_y], [L_x², L_z] 6

UNIT-III

- 5. (a) Simple harmonic oscillator $H = p^2 + x^2$ is perturbed by $V = \lambda x^3 + \mu x^4$. Find the first order correction to the ground state. 8
 - (b) In non-degenerate perturbation theory formalism, explain why the second order correction to the energy for the ground state is always negative. 4

6. (a) Given $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + Cx^4$, choose a suitable trial wavefunction and estimate ground state energy using variational method. 8

4

(b) Write a note on degenerate perturbation theory.

UNIT-IV

- (a) Obtain the general expression for the probability of transition from one state to another under constant harmonic time dependent perturbation.
 - (b) What are the selections rules for emission and absorption of light.

7.

8. (a) State and explain Fermi Golden rule.8(b) What are Einstein coefficients ?4

UNIT-V

9	(a)	State the two basic postulates of quantum mechanics.	2
	(b)	Define Hilbert space	2
	(c)	What is a :	
		(i) linear operator	
		(ii) anti-linear operator.	2
	(d)	Explain the role of complete set of commuting operator	rs in
		describing a quantum system.	2

- (e) Explain why variational method always gives an upper limit for the ground state energy of the system.
 2
- (f) Give the matrix representation of S_z for spin $\frac{1}{2}$ particle

useful relation $\int_{-\alpha}^{\infty} x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) \sqrt{\pi}}{2^n a^{(2n+1)/2}}$. 2

9