B.A./B.Sc. (General) 3rd Semester 1125

MATHEMATICS

Paper—III: Statics

Time Allowed: Three Hours] [Maximum Marks: 30

Note: Attempt **five** questions selecting at least **two** questions from each Unit. Each question will carry 6 marks.

UNIT-I

- I. (a) Prove that direction of the resultant of two concurrent forces is inclined more towards the greater force.
 - (b) If greatest possible resultant of two forces R and S acting at a point is m times the least, show that the angle between them when their resultant is half their sum is

$$\cos^{-1}\left(-\frac{m^2+2}{2(m^2-1)}\right).$$

- II. (a) If a force be resolved into two components, one of which is at right angles to the force and equal to it in magnitude, find the direction and magnitude, of the other.
 - (b) A, B and C are three points on a circle. Forces inversely proportional to AB and BC act along AB and BC respectively. Show that their resultant acts along the tangent to the circle at B.

- III. (a) Find the resultant of two unlike parallel forces R and S (R > S) acting at two distinct points.
 - (b) A string is tied to two points at the same level, and a smooth ring of W kg wt which can slide freely along the string, is pulled by a horizontal force of P kg wt. If in the position of equilibrium the portions of string are inclined at 60° and 30° to the horizontal, find the value of P and tension in the string.

3

3

IV. (a) State and prove Lami's Theorem.

(b)

A weight W is supported on a smooth plane of inclination β to the horizontal by a force whose line of action makes an angle 2β with the horizontal. If the pressure on the plane

an angle 2β with the horizontal. If the pressure on the plane be arithmetic mean of the weight and the force,

show that : $\beta = \frac{1}{2} \sin^{-1} \left(\frac{3}{4} \right)$.

UNIT-II

- V. (a) A 100 kg vertical force is applied at the end B of a tree AB which is fixed in the ground making an angle 60° with the horizontal:
 - (i) Find the moment of force at B about A.
 - (ii) What is the magnitude of a horizontal force applied at B which creates the same moment about A? 3
 - (b) Three like parallel forces 2R + S, 4R S and 8N act at the vertices of a triangle. Find R and S if their resultant passes through the centroid of the triangle.
- VI. (a) Show that two coplanar couples of equal and opposite moments are in equilibrium.

(b) A light wire, in the form of an arc of a circle subtending an angle β at its centre and having two weights P and Q at its extremities, rests with its convexity downwards upon a horizontal plane. If θ is the inclination to the vertical of the radius to the end at which P is suspended, then show that

$$\tan \theta = \frac{Q \sin \beta}{P + Q \cos \beta}.$$

VII. (a) ABCD is a rectangle with AB and BC of 'a' and 'b' units respectively. Forces P, P act along AB and CD and forces Q, Q act along AD and CB, where P > Q. Prove that the perpendicular distance between the resultant of the forces P, Q at A and the resultant of the forces P, Q at C is

$$\frac{Pb - Pa}{\sqrt{P^2 + Q^2}}.$$

- (b) A uniform ladder of weight W is resting in limiting equilibrium with its one end on a rough horizontal floor and the other end against a smooth vertical wall. Show that the inclination of the ladder to the vertical is twice the angle of friction.
- VIII. (a) A heavy rod AB whose centre of gravity divides it into two portions a and b is placed inside a smooth sphere. The rod subtends an angle 2α at the centre. Find inclination of the rod to the vertical and reactions at A and B.
 - (b) If the force which acting parallel to a rough plane of inclination θ to the horizon is just sufficient to draw a weight up be m times the force which will just be on the point of sliding down,

show that
$$\tan \theta = \frac{m+1}{m-1}\mu$$
, where μ is the coefficient of friction.