(i) Printed Pages : 3

Roll No.

(ii) Questions : 7

Sub. Code: 0 Exam. Code: 0

B.A./B.Sc. (General) 3rd Semester

1125

PHYSICS

Paper—A: Statistical Physics and Thermodynamics—I

Time Allowed : Three Hours]

[Maximum Marks : 22

4

4

3

2

0

- Note :-- (1) Attempt five questions in all selecting two questions from each of Sections A and B respectively.
 - (2) Section C is compulsory.
 - (3) Use of log table and non programmable calculator is allowed.

SECTION-A

- 1. Show that for distribution of n identical particles in 2 compartments with equal a priori probability, the deviation from a state of maximum probability is highly improbable. 4
- 2. (a) Describe the terms (i) microstate (ii) macrostate and give the distribution of 4 distinguishable particles in 2 compartments in a tabular form.
 - (b) A system having 8 distinguishable particles distributed in 2 compartments with equal a priori probability. Calculate probability of macrostate (i) (4, 4) (ii) (3, 5). 1

[Turn over

- (a) Prove that for a dynamic system the fraction of the total time that a system spends in any particular macrostate is proportional to the thermodynamic probability of that macrostate.
 - (b) Eight distinguishable particles are distributed in 2 compartments of unequal sizes. The first compartment is further divided into 6 cells and 2nd into 2 cells of equal sizes. Calculate the probability of (i) macrostate (5, 3) (ii) most probable macrostate.

SECTION-B

4. Give the assumptions of M–B statistics and using M–B distribution law for an ideal gas obtain the distribution law of molecular speeds.

4

3

5. (a) What is Fermi Energy? Using F–D distribution law for electron gas —

$$n_{u} du = \frac{8\sqrt{2} \pi V m^{3/2}}{h^{3}} \times \frac{u^{1/2}}{e^{(u-u_{f})}/kT_{+1}}$$

find the expression for fermni energy.

- (b) Calculate the fermi energy of copper in ev. Given at no. of Cu = 29, and atomic mass of Cu = 63.5 g mol⁻¹ and density of Cu = 8.94 g cm⁻³.
- 6. (a) What is Photon gas ? Using B-E distribution law deduce Planck's law for black body radiations in terms of wave length.
 - (b) Assuming the radius of sun to be 7×10^8 m and temperature of its surface to be 6000 K, find the amount of energy radiated by sun.

0244/BHJ-32410

SECTION-C

- 7. Attempt any SIX parts :---
 - (i) Calculate r.m.s. and average velocity for oxygen at N.T.P. Given $K = 1.38 \times 10^{-23} \text{ JK}^{-1}$ and mass of oxygen molecule is $5.31 \times 10^{-26} \text{ kg}$.
 - (ii) The temperature of ordinary electric bulb is around 3000 K. At what wavelength will it radiate maximum energy? Will this wavelength be in visible region? Given Wien's constant b = 0.0029 mK.
 - (iii) The peak of v versus $\frac{n_v}{n}$ curve is sharper at low temperatures, why?
 - (iv) What is phase space ? Why is phase space divided into cells ?
 - (v) Write occupation index $\frac{n_i}{g_i}$ of energy distribution of particles in 3 kinds of statistics and discuss it for (i) $u_i >> KT$ (ii) $u_i << KT$.
 - (vi) Give the similarities and dissimilarities between approach of B-E and F-D statistics.
 - (vii) A problem in Statistical Physics is given to three students where chances of solving are 1/2, 1/3 and 1/6. What is the probability that the problem will be solved? $6 \times 1=6$

9500