Roll No. **Printed Pages: 4** (i) Sub. Code: 0 Ouestions : 9 (ii) Exam. Code:

B.A./B.Sc. (General) 2nd Semester 1046

CHEMISTRY (Same for B.Sc. Microbial and Food Tech.) Paper-VII: Physical Chemistry-B

[Maximum Marks: 22 Time Allowed: Three Hours

Note: Attempt five questions in all, including Question No. IX which is compulsory and selecting one question from Units I, II, III and IV. You may use simple calculators.

TINIT-I

- What are Extensive and Intensive Properties? Explain. (a) T.
 - What are molar heat capacities at constant volume and constant (b) pressure? How are they related?
 - Derive expression for w, q, Δ E and Δ H for an ideal gas (c) undergoing isothermal reversible expansion.
 - Define Joule Thomson Coefficient and Inversion Temperature. II. (a) What is the significance of Inversion Temperature in adiabatic expansion of real gas?
 - Describe comparison between Reversible Isothermal and (b) Adiabatic expansion for an ideal gas. Show with graph if any.

- Derive: (c)
 - PV = Constant
 - (ii) $TV_{r-1} = Constant$.

2

UNIT-II

III. Derive the relationship: (a)

$$\frac{\Delta U_2 - \Delta U_1}{T_2 - T_1} = \Delta C^{v}$$

Also name the equation.

- State Hess's Law of Constant Heat Summation.
- (c) Enthalpy of Neutralisation of all strong acids and strong bases is equal. Explain.
- (d) Define bond energy and bond dissociation energy.
- IV. (a) Define:

(b)

- Enthalpy of hydration
- (ii) Enthalpy of solution.

The heat of reaction for the formation of Ammonia by Haber's (b) Process at 300 K was found to be -91.95 kJ. What will be the heat of formation at 323 K. The molar heat capacities at 300 K for N₂, H₂ and NH₃ are 28.45, 28.33 and 37.07 J mol-1 K-1 respectively.

UNIT-III

V.	(a)	Give different methods for formation of emulsions.	1
	(b)	Explain five important applications of colloids.	1
	(c)	Define:	
		(i) Imbibition	
		(ii) Peptization.	2
VI.	(a)	How colloidal solution can be purified?	2
	(b)	What is the cause of Tyndall effect?	1
	(c)	Why some Colloidal solutions are coloured?	1
UNIT-IV			
VII.	(a)	What are Colligative Properties? How can you explain t fact that elevation of Point is a Colligative Property.	he 2
	(b)	What do you know about abnormal molecular masses Explain.	?
	(c)	What are ideal and non ideal solutions?	1
VIII.	(a)	Thermodynamically derive the relationship between elevation Boiling Point and relative lowering of Vapour Pressure.	
	(b)	A 10% solution of an organic compound (with Mol. Wt 92) given. Taking $R = 0.0821$ litre. atm/degree/mol. Calcula osmotic pressure at 10° C.	te
		osmone pressure at 10°C.	2
	(c)	Explain in detail about azeotropes.	1

(Compulsory)

- IX. (a) Under what conditions is Van't Hoff factor 'i' not equal to one?
 - (b) Define Electrophoresis.
 - (c) What is Standard State?
 - (d) Define enthalpy of formation.
 - (e) Define Gold Number.
 - (f) Define the term 'Chemical Potential.'

6×1=6