(i) Printed Pages : 4

Roll No.

(ii) Questions :9

Sub. Code : 0 4 8 4 Exam. Code : 1 0 3

B.A. /B.Sc (General) 3rd Year

1046

STATISTICS

Paper: 302: Statistical Quality Control and

Computational Techniques

Time Allowed : Three Hours]

[Maximum Marks : 65

- **Note** :- (i) Attempt **five** questions in all, including the **first** Compulsory questions from each section.
 - (ii) Use of simple non-programmable calculators is allowed.
 - (iii) Statistical tables and log tables will be provided on demand.
 - (iv) Various symbols used have their usual meaning.

(Compulsory Question)

- 1. (a) Define Producer's risk and explain its significance.
 - (b) What determines the width of the control limits in a process control ?
 - (c) Distinguish between defect and defective.
 - (d) What are the benefit and limitations of the graphical methods of solving the linear programming problems ?
 - (e) Explain briefly the Gauss-Siedel method of obtaining the iterative solution of linear equations. 3,2,3,3,2

SECTION-I

- (a) Explain the term Statistical Quality Control. What is meant by process control in industrial statistics? Also briefly about quality assurance.
 - (b) Explain the construction and uses of c-chart and p-chart, clearly mentioning that under what circumstances c-chart is used instead of p-chart.
 6,7
- 3. (a) Distinguish between single and double sampling plans.
 - (b) Discuss the basis principles underlying the control charts. Explain how control charts are determined for :
 - (i) Mean chart and

Statistical tables and log tubles will be provided on demand.

(ii) Range chart.

7,6

- 4. (a) Explain the causes of variations in quality characteristics of a product.
 - (b) Discuss about ASN and OC curves functions in the context of double sampling plan. 4,9
- 5. Write in detail about the following :
 - (a) *np* charts and its uses
 - (b) AOQL and LTPD

6,7

SECTION-II

6. Obtain dual and solve the linear programming problem using simplex method :

Minimize $Z = x_1 + x_2$ Subject to

 $\begin{array}{l} 0.12x_1 + 0.04x_2 \!\geq\! 600 \\ 0.10x_1 \!+\! 0.40x_2 \!\geq\! 1000 \\ x_1, x_2 \!\geq\! 0 \end{array}$

13

- 7. (a) Define the terms :
 - (i) Feasible solution
 - Basic feasible solution in the context of transportation problem and explain about a balanced transportation problem.
 - (b) Explain the Vogel's approximation method of solving a transportation problem. How is it an improvement over the North West Corner method ?
 - 8. (a) What do you understand by interpolation ? What are the underlying assumptions for the validity of the various methods used for interpolation ?
 - (b) The mode of a certain frequency curve y = f(x) is attained at f(9.1) and the value of the frequency function f(x) for x = 8.9, 9.0 and 9.3 are respectively equal to 0.30, 0.35, 0.25. Using Lagrange's interpolation procedure, calculate the approximate value of f(x) at the mode. 8,5

0484/BIK-33206

(a) Using Simpson's one-third rule to estimate approximately the area of the cross-section of river 80 feet wide, the depth d (in feet) at a distance x from one bank being given by the following table :

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

(b) Find the value of f(8) and f(15) from the following table using Newton's divided differences procedure:

used for interpolation?

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

7,6

9.

4