(i) Printed Pages : 3

Roll No.

(ii) Questions :9

Sub. Code :	3	2	3	6
Exam. Code :	4	7	4	

M.Sc. IIIrd Semester

1125

PHYSICS

Paper: Phy-7002: Statistics Mechanics

Time Allowed : 3 Hours

[Maximum Marks: 60

Note :- Attempt five questions in all, selecting one each from Units I-IV. Q. 9. Unit V is compulsory. All questions carry equal marks.

UNIT-I

- 1. (a) Using the corrected entropy formula work out the entropy of mixing for two different gases and thus show that actually there is no Gibbs paradox. 7
 - (b) For extreme relativistic gas show that $\gamma = 4/3$. 5
- 2. (a) State and prove Liouville's theorem. Discuss its consequences. How do they lead to the description of a microcanonical and a canonical ensemble ?
 - (b) Two systems A and B, of identical composition are brought together and allowed to exchange energy and particles, keeping volumes constant. Show that minimum value of the quantity

$$(dE_A/dN_A)$$
 is $\frac{\mu_A T_B - \mu_B T_A}{T_B - T_A}$

3236/BHJ-32346

Turn over

5

UNIT-II

- 3. Evaluate partition function of ideal gas in quantum mechanical ensemble. Generalise it for different ensembles. 12
- 4. (a) Analyse the problem of solid-vapour equilibrium using grand partition function. 6
 - (b) Evaluate the quantity $p_{\epsilon}(n)$, probability that there are n particles in the state of energy ϵ . Comment on this quantity for F.D. and B.E. statistics. 6

UNIT-III

- (a) Define the mean thermal wavelength of a particle. Why is it known as 'wavelength'? Discuss the phenomenon of Bose-Einstein condensation.
 - (b) Show that for Fermi gas at finite but low temperature C_v is proportional to T. 5
- 6. (a) Show that in the limit $T \rightarrow 0$, Fermi gas follows third law of thermodynamics. 6
 - (b) Set up the equation of state for an ideal Fermi gas.

6

UNIT-IV

7. (a) Find the approximate value of long range order parameter and thus deduce heat capacity and entropy of a system of up and down spins.

(b)

8.

Given that
$$p_n(m) = \frac{n!}{\left\{\frac{(n+m)}{2}\right\}! \left\{\frac{(n-m)}{2}\right\}!} \left(\frac{1}{2}\right)^n$$
, show that

the given equation may be written in the Gaussian form.

- 6
- (a) Evaluate mean square fluctuations in energy with T and V as independent variables and compare your result with canonical and grand canonical ensemble. 6
 - (b) Evaluate specific heat of a system of $\frac{1}{2}$ spins (Using model) at $T \le T_c$ approaching from below T_c and thus account for the discontinuity at $T = T_c$.

UNIT-V

- 9. (a) Assuming that S and Ω of a physical system are related through the arbitrary functional form S = f(Ω), show that the additive character of S and the multiplicative nature of Ω necessarily require that the function f(Ω) be of the form S = k lnΩ.
 - (b) For classical ideal gas show that $PV^{5/3} = Constant$.
 - (c) Is ln Q_N(V, T) an extensive or intensive property of the system? Justify.
 - (d) Compare graphically the specific heats of a classical ideal gas, an ideal Bose gas and an ideal Fermi gas as a function of temperature.
 - (e) Find the partition function of a system of N classical harmonic oscillators.
 - (f) How does mean square fluctuation of intensive and extensive quantity vary with size of the system? Give examples.

6×2=12